

Figure 4-6. Thning Meter Circuit, Simplified Schematic Diagram
e. TUNING METER. - (Refer to figure 4-6.) The r-f metering circuit is composed of TIUNING METER M201, a O-1 ma meter, and METER SELECTOR S203, a two-pole, nineposition switch. For eight of its positions, S203 shunts the meter across a series resistor in each of eight different circuits within the transmitter. Appropriately sized resistors are used in seven of the circuits to provide approximately mid-scale meter readings when the circuit is operating normally. In the eighth circuit (the OSC position of the METER SELECTOR switch), the resistor permits a normal meter reading of at least 0.1 ma . An indication of the r-f output of the transmitter is provided by the TUNING MEIER when S203 is in its ANT position. A voltage detector, composed of an r-f rectifier and filter, is connected to the r-f input terminal of the coaxial relay. The meter shunt resistor, R234, is connected in series with the filter load resistor, R233. The resultant meter indication is directly proportional to the r-f voltage at the ANT output connector of the transmitter.

4-3. MODUIATOR.

The Modulator is composed of the audio input circuits, an audio preamplifier, an audio limiter, an audio amplifier, an audio driver and an audio modulator. The audio signals are received from either the dynamic microphone, the carbon microphone, or the telephone lines. The modulator amplifies the signals, limits them (if the LIMITER IN-OUT switch has been set to its IN position), and superimposes them upon the $d-c$ voltages supplied the plates and screens of the power amplifier tubes.
a. AUDIO INPUT CIRCUITS. (Refer to figure 4-7.)
(1) DYNAMIC MICROPHONE. - The dynamic microphone is connected to the Modulator

Figure 4-7. Audio Input Circuits and Audio Preamplifier, Simplified Schematic Diagram

Figure 4-8. Audio Limiter, Simplified Schematic Diagram

Figure 4-9. Audio Amplifier, Simplified Schematic Diagram

Unit via four-terminal jack J307. The microphone output, at pin 2 of the jack, is applied to the grid of the first audio preamplifier stage, V301A. L301 and C301, connected between J307 and the grid of V301A, form a decoupling circuit which blocks stray r-f from entering the amplifier.
(2) TELEPHONE LINES. - A pair of 600 ohm telephone lines connects the remote audio signals to two of the three primary windings of audio input transformer T305 via terminals 3 and 6 of jack J305. The lines are isolated for $\mathrm{d}-\mathrm{c}$ at the transformer by capacitors C320 and C322. Thus, each line may be used to carry a discrete d-c control signal in addition to the audio signals. The secondary of T 305 is connected across the REMOTE potentiometer, R3O1. The potentiometer control arm is available as a screwdriver adjustment on the front of the Modulator Unit chassis. The signal at the arm of R3O1 is connected to the REMOTE terminal of the MIKEREMOTE switch, S302.
(3) CARBON MICROPHONE. - The carbon microphone is connected to the modulator via microphone jack J308. The microphone output is applied to the third primary winding of transformer T305. The REMOTE potentiometer, therefore, controls the gain of signals from the carbon microphone as well as from the telephone lines. D-c voltage for the carbon microphone is supplied from the junction of R106 and R109, in the low voltage bleeder. R109 is by-passed for audio by capacitor Cl09.
b. AUDIO PREAMPLIFIER. - (Refer to figure 4-7.) The audio output of the dynamic microphone is applied to the grid of amplifier V301A, 1/2 of a 5751 . C302, in the cathode circuit, and C321, in the plate circuit, serve to bypass any r-f voltages to ground. The plate of V301A is coupled to the grid of amplifier V301B by capacitor C303. V301B is coupled to MIKE potentiometer R308 by capacitor C304. The potentiometer control arm is available as a screwdriver adjustment on the front of the Modulator Unit chassis. The output of the potentiometer is applied to the grid of amplifier V302A, $1 / 2$ of a 5814. The output of V302A is applied to the MIKE terminal of switch S302 via capacitor C304.

The center terminal of the MIKE-REMOTE switch is connected to the center terminal of the first section of the LIMITER IN-OUT switch, S301A. When S301 is in its IN position, the audio signal which passes the MIKE-REMOTE switch enters the audio limiter circuit; when S301A is in its OUT position, the signal bypasses the limiter and enters the audio amplifier.
c. AUDIO LIMITER. - (Refer to figure 4-8.) The audio limiter consists of V303, a type 5726 double diode, connected in a shunt type limiting circuit. The cathode of V303A and the plate of V303B are held at +1.5 v ; the plate of V303A is connected to ground while the cathode of V303B is held at +3 v . The audio signals from switch S3O1A, thus, are limited to an upper level of +3 v and a lower one of ground.

The low-pass filter, following the limiter, consists of inductor L302 and capacitors C307 and C309, connected in a pi-type circuit. Capacitor C308 is connected in parallel with $L 302$ to form a parallel resonant circuit at the cut-off frequency. The filter, thus, provides rapid attenuation to all frequencies above 3000 cycles.

The output of the filter is connected to the grid of audio amplifier V302B, $1 / 2$ of a 5814. The clipped audio signal is amplified to approximately its original level by V302B, then applied to the MOD potentiometer, R317, via coupling capacitor

Figure 4-10. Audio Driver and Modulator, Simplified Schematic Diagram

Figure 4-11. Modulator Meter Circuit, Simplified Schematic Diagram

C311. The control arm of R317 is available as a screwdriver adjustment on the front of the Modulator Unit. The potentiometer must be adjusted to supply an output signal which will provide the desired per cent modulation of the carrier. The output of the potentiometer is connected to the audio amplifier via the second half of the LIMITER IN-OUT switch, S301B.
d. AUDIO AMPLIFIER. - (Refer to figure 4-9.) The audio signal from S301B is applied to the grid of amplifier V304A, $1 / 2$ of a 5814. Capacitor C313 couples the plate of the amplifier to the grid of audio amplifier V304B. The output of amplifier V3O4B is coupled to the grids of the push-pull audio driver by transformer T303. For communications service, where it is desired to limit the high-frequency audio response, capacitor C3l2 must be connected between the grid of V304B and ground. (See paragraph 2-4C for the procedure to be followed in making this connection.) For VOR service, this connection must not be made, since the audio frequency instantaneous response must extend beyond the highest frequency of the 9960 F-M subcarrier.
e. AUDIO DRIVER. - (Refer to figure 4-10.) The audio driver uses V305 and V306, both type 6B4G triodes, connected in a push-pull amplifier circuit. The drivers are operated Class A, with a -48 v fixed bias applied to the grids from the bias supply. The filaments are connected in parallel across one of the 6.3 v secondary windings of transformer T 304 . The plates are held at the +270 v output of the low voltage supply. The output of the driver is coupled to the audio modulator by transformer T302.
f. AUDIO MODULATOR. - (Refer to figure 4-10.) The audio modulator uses two type 811A triodes, V307 and V308, connected in a Class B push-pull circuit. The modulator produces the 200 watts of audio power required to modulate the power amplifier stage of the R-F Unit. The filaments are connected in parallel across the other 6.3 v secondary winding of transformer T 304 . The grids, connected to the center tap of this winding, are operated at zero bias. R337, between the center tap and ground, provides an indication of the common grid current for the modulator meter, M301. The plates of the modulator tubes are connected to opposite ends of the primary winding of modulation transformer T301. The +1000 v output of the high voltage supply is applied to the plates via a center tap on this winding. The transformer has two secondary windings. The output of one of them, superimposed on a d-c level of +270 v , is applied to the screens of power amplifiers v206 and V207. The output of the other secondary winding, superimposed on a d-c level of +1000 v , is applied to the plates of V206 and V207 through the r-f decoupling network.
g. MODULATOR METER. - (Refer to figure 4-11.) The Modulator Unit metering circuit is composed of meter M301 and two-pole, five position, meter selector switch S303. In its first, or HV, position, the switch shunts the meter across resistor R334, one element of a voltage divider network which also includes resistors R332 and R333. The voltage divider is connected in parallel with the bleeder of the high voltage supply. For its HV setting, the meter provides an indication of the +1000 v output of the high voltage supply on its $0-1500 \mathrm{v}$ scale. In its second position, the selector switch shunts the meter across R337, in the common grid circuit of modulator tubes V307 and V308. For this setting, the meter provides an indication of the combined grid currents of the two tubes on its $0-500 \mathrm{ma}$ scale. The normal reading for this current is 45 ma with no modulation component present, and 250 ma with the modulation component present. In its third position, the switch connects the meter across the bleeder of the bias supply. For this setting the meter

Figure 4-12. High Voltage Supply, Simplified Schematic Diagram

Figure 4-13. Low Voltage Supply, Simplified Schematic Diagram
provides an indication of the -48 v bias voltage on its $0-100 \mathrm{v}$ scale. In its fourth position, the switch connects the meter across the bleeder of the low voltage supply. For this setting, the meter provides an indication of the +270 v output of the low voltage supply.

4-4. POWER SUPPLY.
The d-c voltages required by the 242F-2 Transmitter are as follows: +1000 v , $+270 \mathrm{v},+150 \mathrm{v},+60 \mathrm{v},+22 \mathrm{v}$, and -48 v . These voltages are supplied by a high voltage supply, a low voltage supply, and a bias supply. The high voltage and low voltage supplies are physically divided between the Rectifier and Control Unit and the Filament and Bias Supply Unit. The bias supply is contained within the Filter and Bias Supply Unit. The filament voltages required by the transmitter are supplied by two filament transformers: T201, located in the R-F Unit, and T3-4, in the Modulator Unit.
a. HIGH VOLTAGE SUPPLY. - (Refer to figure 4-12.) The hign voltage supply consists of a full-wave vacuum tube rectifier, a two-section choke-input filter, and a bleeder network. The rectifier, contained within the Rectifier and Control Unit, uses two 866As connected in a full-wave circuit. The a-c primary power is supplied the receifier by transformers TIOI and TlO3.

The filter uses Ll01, a "swinging" choke, and capacitor ClOl in its first section. The second section uses fixed choke Ll02 and paralleled capacitors ClO2 and ClO3. The two sections reduce the ripple at least 50 db below the $\mathrm{d}-\mathrm{c}$ voltage. The bleeder, composed of resistors R101, R102, and R103, supplies a minimum load for the high voltage supply and provides output voltages of +1000 v and +60 v .

The +1000 v output of the bleeder is supplied to the plates of power amplifiers V206 and V207 via one of the secondary windings of modulation transformer T301, and to the plates of modulator tubes V307 and V308 via the primary winding of the same transformer. The +60 v output energizes the SG PROTECTION relay, KIOl, in the control circuit.
b. LOW VOLTAGE SUPPLY. - (Refer to figure 4-13.) The low voltage supply consists of a full-wave rectifier, an "L" section choke-input filter, and a bleeder network. The rectifier, contained within the Rectifier and Control Unit, uses two 866As connected in a full-wave circuit. The a-c primary power is supplied the rectifier by transformers T102 and T103.

The filter uses inductor Ll 03 as the series element and $\mathrm{ClO4}$ as the shunt element. Capacitors ClO5 and ClO6 are connected in parallel with LlO3 to form a parallel resonant circuit at the fundamental ripple frequency. The ripple output of the filter is at least 40 db below the $\mathrm{d}-\mathrm{c}$ level. The bleeder, composed of resistors Rl05, Rl06, and R109, supplies a minimum load for the low voltage supply and provides output voltages of $+270 \mathrm{v},+150 \mathrm{v}$, and +22 v .

The +270 v output of the bleeder is supplied to the screens of the power amplifiers and the plates and screens of all the other tubes of the transmitter except V307 and V308. The +150 v output is connected to the power amplifier screens via the TUNE terminal of the TUNE-OPERATE switch. This voltage is used as screen voltage for the power amplifier tubes during tuning of the R-F circuits. The +22 v output supplies the button current required by the carbon microphone.

Figure 4-14. Bias Supply, Simplified Schematic Diagram

Figure 4-15. Filament Circuits, Simplified Schematic Diagram
c. BIAS SUPPLY. - (Refer to figure 4-14.) The bias supply consists of a copperoxide full-wave rectifier, CRIO1, and an L-C pi-type filter, composed of L104, $\mathrm{ClO7}$, and Cl 08 . The filter attenuates the fundamental ripple frequency at least 40 db below the $\mathrm{d}-\mathrm{c}$ level. The primary $\mathrm{a}-\mathrm{c}$ power is supplied the rectifier by transformer TlO4. The -48 v bias developed across bleeder R104 is distributed to the power amplifier grids and the audio driver (V305 and V306) grids.

The bias supply also provides energizing current for certain of the control relays within the equipment. The -48 v output of the supply is connected to relays KlO 2 and K202 and to pin 1 of J305. For remote control installations, pins 1 and 2 of $J 305$ may be jumpered to connect the -48 v output to relays Kl03 and K104.
d. FILAMENT CIRCUITS. - (Refer to figure 4-15.) The filaments of rectifiers VlOI and Vl02 are connected in parallel across one of the 2.5 v secondary windings of transformer T103; the filaments of V103 and V104 are connected across the other 2.5 v secondary winding of that transformer. The filaments of tubes V201 through V205, and the heater element of the crystal oven, are connected in parallel across the 6.3 v secondary winding of T201. The filaments of $4 \times 250 \mathrm{Bs}, \mathrm{V} 206$ and v207 are connected in parallel across the 6.0 v secondary winding of T201. The filaments of tubes V301 through V306 are connected in parallel across one of the 6.3 v secondary windings of $T 304$ while those of V307 and V308 are connected across the other 6.3 v secondary winding of that transformer.

4-5. CONTROL CIRCUITS. (Refer to figure 4-16A.)

The LOCAL-REMOTE switch, SlO2, adapts the control circuits for either local or remote control of the transmitter. When in its LOCAL position, SlO2 connects the switches on the transmitter panels into the control circuits. When in its REMOTE position, it connects the contacts of relays within the transmitter, which are controlled by switches on the Remote Control Unit, into the control circuits.

For both local and remote operation, the local ON-OFF switch, S1O1, controls the connection of primary power to the equipment. When the switch is in its ON position, a-c power is connected directly to the bias supply transformer, T104. Further distribution of the a-c power is then controlled by the local and remote switches, as described in the paragraphs which follow.
a. LOCAL CONTROL (SIO2 in LOCAL position).
(1) FILAMENT VOLTAGES. - For local operation, the ON-OFF switch, Slol, provides complete control of the connection of primary power to filament transformers $\mathrm{TlO3}$, in the Rectifier and Control Unit, T304, in the Modulator Unit, and T201, in the R-F Unit.
(2) PLATE AND SCREEN VOLTAGES. - The PLATE VOLTAGE relay, Kl02, controls the distribution of primary power to the HV plate supply transformer, T1O1. K102, in turn is controlled by the TIME DELAY relay, K204, and the PLATE ON-PUSH TO TALK switch, S103. The purpose of K 2 O 4 is to prevent plate and screen voltages from being applied to the tubes of the R-F Unit and the Modulator Unit before their filaments have had time to warm up. The contacts of K2O4 close thirty-five seconds after filament power has been supplied the R-F Unit and connect one end of the coil of KlO2 to Sl03. When in its PLATE ON position, Sl03 connects this end of the coil to ground. The other end of the coil is connected directly to the -48 v output of the bias supply.

Figure 4-16A. Control Circuits, Simplified Schematic Diagram

The PLATE VOLTAGE relay, Kl02, and the SG PROTECTION relay, KlO1, control the distribution of primary power to the LV plate supply transformer, Tl02. Relay Kl01 is energized by the +60 v output of the high voltage bleeder. Whenever the high voltage fails, the relay becomes de-energized and its contacts disconnect the primary power source from TlO2. The purpose of KlOl is to protect the power amplifier tetrodes from drawing excessive screen current when the voltage applied to their plates is below its normal value.
(3) CHANNEL SELECTION. - The CRYSTAL SELECTOR relay, K202, controls the connection of one or the other of the two crystals, Y201 and Y202, to the r-f oscillator circuit. When the CHANNEL l-CHANNEL 2 switch, S201, is in its CHANNEL 1 position, K202 is de-energized and crystal Y201 is connected to the oscillator. When the switch is in its CHANNEL 2 position, K2O2 is energized and crystal Y202 is connected to the oscillator.
(4) COAXIAL RELAY. - The coaxial relay, K201, is connected across the primary windings of HV plate transformer T1O1; it is energized, therefore, only when primary power is being supplied that transformer. When energized, the relay connects the r-f output of the power amplifier to the ANT coaxial receptacle on the R-F Unit. When de-energized it connects the REC coaxial receptacle on that unit to the ANT one.
b. REMOTE CONTROL. (SlO2 in REMOTE position.)
(1) FILAMENT VOLTAGES. - For remote operation, the contacts of the REMOTE ONOFF relay, KlO4, are connected in series with the local ON-OFF switch, Sl01. The remote ON-OFF switch and either the local or remote source of energizing current must be connected in series with KlO4 via terminals 2 and 5 of J305. (The local source of energizing current is available at terminal 1 of J305.) With the local ON-OFF switch in its ON position, the remote ON-OFF switch controls the connection of primary a-c power to filament transformers T103, T304, and T201.
(2) PLATE AND SCREEN VOLTAGES. - The REMOTE PLATE ON relay, KIO3, controls the energizing of PLATE VOLTAGE relay KI02. K103 must be connected in series with the remote PLATE ON-PUSH TO TALK switch and either the local or remote source of energizing current via pins 2 and 8 of J305. When the remote switch is in its PLATE ON position, KlO3 is energized and its contacts complete the circuit of KlO2. When the remote switch is in its PUSH TO TALK position, KlO2 may be energized only by the remote PUSH TO TALK button. This button is connected to the transmitter via terminal 15 of J305.
(3) CHANNEL SELECTION. - For remote operation, the remote CHANNEL 1-CHANNEL 2 switch may be used to control the CRYSTAL SELECTOR relay K202. The control circuits are designed with two REMOTE CHANNEL SELECTION inputs: terminal 11 of J205 receives $\pm 48 \mathrm{v}$ as the REMOTE CHANNEL 2 control signal while terminal 10 receives ground as that signal. The REMOTE CHANNEL SELECTION telephone line must be connected to one or the other of these inputs, depending upon which type of control is being used. The $\pm 48 \mathrm{v}$ control signal, from terminal ll, energizes the REMOTE CHANNEL SELECTION relay, Kl05. The contacts of this relay, when closed, complete the circuit of CRYSTAL SELECTOR relay, K202. The ground control signal, from terminal 10, completes the circuit of K202 directly. With K2O2 energized, crystal Y202 is connected to the R-F oscillator circuit.

4-6 35D-2 LOW PASS FILTER. (Refer to figure 4-17A.)
The 35D-2 Low Pass Filter consists of three I-sections connected in cascade. Each section consists of an air-core inductor, as the series element, and one to four ceramic capacitors, as the shunt elements. Three ceramic capacitors, ClO2, Cl05, and C107, are connected in parallel with inductors L101, L103, and L104, respectively. These parallel L-C circuits resonate at frequencies in the range 216 to 456 mc to increase the attenuation of the harmonic signals within that range. The filter provides a minimum attenuation of 60 db to all signals in the frequency range 216 to 456 mc .

The filter is so designed that it provides an attenuation of less than 0.8 db to signals, in the frequency range 108 to 152 mc , passing through it in either direction. The filter, thus, need not be removed from the transmission line when the antenna is connected to the receiver.

NOTES:
NOTES:

1. ALL INDUCTANCE IN MICROHENRIES
2. ALL CAPACITANCE IN MICROMICROFARADS
3. ALL INDUCTANCE VALUES ARE CALCULATED
$825026 \quad 4$

Figure 4-17A. Type 35D-2 Low Pass Filter, Simplified Schematic Diagram

SECTION V

MAINTENANCE

5-1. GENERAL.

This section presents preventive and corrective maintenance procedures for the 242F-2 Transmitter. The preventive maintenance procedures are provided to assist in keeping the transmitter in good working order, so that breakdowns and needless interruptions in service can be kept to a minimum. The corrective maintenance procedures may be used to locate the source of a trouble within the transmitter so that the correction can be made. The section presupposes that the maintenance personnel are familiar with the physical make-up of the equipment and have a thorough knowledge of its basic circuits. A trouble-shooting chart, a set of voltage and resistance measurements, and a schematic diagram of the equipment are provided for maintenance purposes.

5-2. TEST EQUIPMENT RECOMMENDED FOR MAINTENANCE.
(1) High Impedance Voltmeter: 20,000 ohms/volt d-c; 5000 ohms/volt a-c.

Ranges: $0-10,0-300,0-1500$ volts d-c.
$0-10,0-150,0-1500$ volts a-c.
(2) Ohrmeter

Ranges: 0-10 ohms, 0-100,000 ohms, 0-5 megohms.
(3) D-C Vacuum Tube Voltmeter: $0-300$ volt scale ranges, input impedance 11 megohms or higher. (Electronic Designs 100, RCA Voltohmyst, or equal.)
(4) A-C Vacuum Tube Vol.tmeter: $0-10$ millivolt, $0-100$ volt scale ranges. Modified as required for minimum sensitivity to extraneous r-f energy. (HewlettPackard 410, Ballantine 300, or equal.)
(5) R-F Wattmeter, 52 ohm dummy load: Bird Thruline wattmeter, Type 43, with 250 watt element, or Bird 612 r-f wattmeter, or equal.
(6) Oscilloscope: Dumont Type 304 H , modified for VHF use, or Dumont Type 2559, or equal.
(7) Frequency measuring rack ($9-13 \mathrm{mc}$.) , if close frequency tolerances are required.

5-3. PREVENTIVE MAINTENANCE.

The following inspections and maintenance techniques should be performed periodically, as indicated by each paragraph heading:
a. WEEKLY.
(1) Check the ventilation of the power amplifier. (This item is very important and must not be overlooked.)
(2) Check the tuning of the R-F Unit.
(3) Record all TUNING METER and CATHODE METER readings in logbook. If a particular reading drops 20% from its original value, investigate to determine the cause.
b. MONTHLY.
(1) Perform the equipment checks specified in blocks 1,2 and 3 of the troubleshooting chart, figure 5-1A.
(2) Perform an "off-resonance" check of the power amplifier tubes as follows: With the LOADING and PLATE controls adjusted for critical coupling (refer to Table 2-1), detune the plate cavity to each side of the resonance, using the PLATE control. Record the CATHODE 1 and CATHODE 2 currents for resonance and for each offresonant condition. For each tube, record the difference between the reading at resonance and the average of the two readings at off-resonance in the logbook. When the difference is considerably less than the difference noted when the tube was new, the tube is nearing the end of its useful life. (The point at which the tube must be replaced depends upon the application of the transmitter.)

CAUTION
Hold the detuned periods to a minimum (not longer than three seconds) to avoid damaging the $4 \times 250 B s$.
(3) Insert the 250 watt element into the THRULINE watmeter and connect the THRULINE between the 35D-2 and the antenna. Check the PA tuning and record the incident and reflected power. If the readings deviate significantly from the original readings, investigate the cause.
(4) Remove the canvas duct between the blower and the power amplifier. Clean the screen which covers the input vent on the grid cavity. Remove the power amplifier from the R-F Unit chassis and open the plate cavity. Use a brush to clean dirt and other accumulations from the screens which cover the output vents.
(5) With the cavity off the chassis, use a brush to clean the blower impeller. After loosening the dust, run the blower to remove the accumulations from the impeller housing.

CAUTION

Steps (4) and (5) may have to be performed more or less often than once a month, depending upon the rate at which dust accumulates. The cavity must be well ventilated or the $4 \times 250 B$ will overheat and melt down.

Check TUNING METER indications for GRID 1, GRID 2, and ANT positions of METER SELECTOR. Check CATHODE METER indications. If a wattmeter is available, check r-f power output at 35D-2 output connector.
a
Check PA grid and plate tuning. Perform "off-resonance" check on PA; replace $4 \times 250 \mathrm{Bs}$ if necessary. Repeat checks of block 1, above.

If block 1 indications are now normal

If trouble was due to detuned PA:

1. Check ventilation of cavity.
2. Check antenna and transmission line.

If normal

and K102 for proper operation. zonnecting wiring. r supply for an open transhoke.
: 1 Indications are till abnormal
rectly to cavity PA grid and plate ss of block 1 .

If block 1 indications are still abnormal
: METER indications for of METER SELECTOR RIVER to OSC.

If all block 1-c indications are abnormal
of plate voltage as follows: .own fuse.
\geqslant that P202 and J202 are jaged.
\geq that contacts of K204

ining meter circuit or cavity is

control. oltage
in.
: 5-3. components

Connect audio oscillator to J305 as described under modulation percentage check. Trace audio signal from T301 back through modulator to microphone. Locate first stage where signal is undistorted. Faulty component is probably in following stage.
ercentage is still abnormal
16 of
llator

1. Check voltage
Zheck for sformer across :ither
(Refer
ins re-
ck 1-c indications)rmal
tion as ockwise - the or the Replace cond trouble. 1e original measureents with n abnormal likely in

This page intentionally blank in original.

Scanned by Patrick Jankowiak KD5OEI

Contact information for this effort, and any other efforts at documenting and making freely available the manuals for the old laboratory classics, can be found at http://www.bunkerofdoom.com Please vis it us.

Finally, this scan is provided free of charge to download. The original material, even though it is quite old, still belongs to the manufacturer, and it should be assumed there may still be a copyright. While we hope they will not mind home usage and sharing of the old manuals by electronics hobbyists who may own or wish to study the equipment, we insist that this material not be sold or bundled with any materials for sale (such as ebay, online stores, etc).

c. EVERY 90 DAYS.

(1) Check the tubes of the Modulator Unit and the Rectifier and Control Unit in a tube checker. Replace any weak tubes.
(2) If close frequency tolerances are required, check the frequency of the crystal. The respective trimming capacitor, C2O1 or C22l, provides for fine adjustment of the crystal frequency.

5-4. CORRECTIVE MAINIENANCE.
Most of the troubles that develop within the transmitter are expected to be caused by faulty tubes. When a trouble develops, therefore, first isolate the source to one of the four units of the transmitter, then check the tubes in that section and replace those that are faulty. If these procedures do not correct the trouble, perform the basic section checks outlined in blocks 1 , 2 , and 3 of the trouble-shooting chart, figure 5-1A. If any one of these checks fails, proceed vertically from that block and perform the trouble-shooting procedures outlined for that section.
a. R-F Unit. - Use the TUNING METER and the CATHODE METER to locate faulty circuits within the R-F Unit. The ANT setting of the METER SELECTOR switch provides an indication, on the TUNING METER, of the r-f power output from the transmitter. This reading should be within the range 0.4 to 0.5 ma . Connect a wattmeter to the 35D-2 output connector to obtain the actual value of the r-f power output.

If the $\mathrm{r}-\mathrm{f}$ power output is below normal, check the CATHODE METER indications and the GRID 1 and GRID 2 indications of the TUNING METER. In most cases, an abnormal CATHODE METER reading indicates trouble in either the power amplifier or the transmitter output circuit, while an abnormal GRID 1 or GRID 2 reading indicates trouble in one or more of the stages preceding the power amplifier.
(1) NO INDICATION ON EITHER METER. - If there are no GRID 1 and GRID 2 indications and no CATHODE METER indications, check for lack of plate voltage as indicated in block l-e of the trouble-shooting chart.
(2) GRID 1 AND GRID 2 INDICATIONS NORMAL BUT ONE OR BOTH CATHODE METER INDICATIONS ABNORMAL. - If the GRID 1 and GRID 2 indications are 0.4 ma or more, but one or both of the CATHODE METER indications are less than 200 ma, check the PA grid and plate tuning.

NOTE
If the CATHODE METER readings are such that the BALANCE control cannot restore balance within 10% to the plate currents, one of the $4 \times 250 B$ is weak and must be replaced.

Perform an off-resonance check as outlined in paragraph 5-3 and replace one or both of the $4 \times 250 B . s$, if necessary. If one or both of the CATHODE METER indications are still abnormal, check the PA plate and screen voltages as outlined in block l-d of the trouble-shooting chart.

CAUTION

Use care in the replacement of the modulation transformer, T301. The transformer has phased secondary windings and the plate and screen voltages must rise and fall at the same time during modulation. If the transformer is connected improperly, the power amplifier will operate as a dynatron oscillator at an audio rate. The voltage thus developed will probably cause damage to the cavity or the transformer.

If the PA plate and screen voltages are normal, perform the check outlined in block l-g of the trouble-shooting chart. If, with the dumny load connected to the transmitter output, the CATHODE METER indications are normal, the trouble is probably caused by the $35 \mathrm{D}-2$, the transmission line, or the antenna. If the CATHODE METER indications are still abnormal, connect the dummy load directly to the cavity output, P204. If the indications are now normal, the trouble is probably in the coaxial relay, K201. If the indications are still abnormal, either the cavity or the tuning meter circuit may be at fault.
(3) CATHODE METER INDICATIONS NORMAL BUT GRID 1 AND GRID 2 INDICATIONS ABNORMAL. - If the CATHODE METER indications are in the range 200 ma to 230 ma , but the GRID 1 and GRID 2 indications are less than 0.5 ma , one or more of the stages preceding the power amplifier is probably at fault. Use the checks outlined in block l-f of the trouble-shooting chart to isolate the trouble to two successive stages. If replacing the tubes in those stages does not correct the trouble, take voltage and resistance measurements at the pins of the tubes. (Refer to figure 5-2..) An abnormal measurement usually indicates a faulty component in the circuit connected to that pin. Tubes and carbon resistors may be replaced from the local supply; other components may be ordered from Collins Radio Company using the appropriate part numbers listed in Section 6.
b. MODULATOR. - The presence of the modulation component can be detected by setting the METER SEIECTOR to the SCREEN position and observing the TUNING METER for variations in the final screen current. To check the modulation percentage, connect an oscilloscope to the transmitter output and observe the wave-form. By adjusting the respective MIKE or REMOTE gain control, at least 90% modulation should be obtainable. If this modulation level cannot be obtained, perform the modulator checks outlined in blocks 2 a and 2 b of the trouble-shooting chart. (Refer to figure 5-3 for the voltage and resistances measurements of the tubes in the Modulator Unit.)

Check the modulation quality with a VHF receiver, tuned to the transmitter output frequency. If distortion is present, use the procedures outlined in block 3 a of the trouble-shooting chart to locate the faulty components.

NOTES:
I. All voltages above the line, resistances below the line.
2. VOLTAGE MEASUREMENTS TAKEN DURING PLATE-ON, CHANNEL I OPERATION OF THE TRANSMITTER.
3. ALL MEASUREMENTS WITH RESPECT TO CHASSIS GROUND.
4. ALL VOLTAGES ARE D-C UNLESS OTHERWISE INDICATED.
5.* INDICATES READING IS THE GRID CURRENT INDICATION PROVIDED BY TUNING METER.

THIS READING IS NOT THE ACTUAL VALUE OF GRID CURRENT OF TUBE.

Figure 5-2A. Type 242F-2 R-F Unit, Voltage and Resistance Measurements Diagram

- all voltage measurements above the lines, all resistances below the lines.

2. VOLTAGE MEASUREMENTS IN VOLTS; RESISTANCE MEASUREMENTS IN OHMS.
(ALL MEASUREMENTS MADE WITH RESPECT TO CHASSIS GROUND.)
3. ALL MEASUREMENTS NOT ENCLOSED BY PARENTHESIS WERE MADE WITH NO AUDIO INPUT TO the modulator. these measurements are d-c unless otherwise indicated.
4. ALL READINGS ENCLOSED BY PARENTHESIS ARE AUDIO VOLTAGE MEASUREMENTS. THESE READINGS WERE MADE WITH AN AUDIO OSCILLATOR CONNECTED TO PINS 3 AND 6 OF J305 AND ADJUSTED FOR ONE VOLT OUTPUT AT IOOO CPS.
REMOTE POTENTIOMETER CONTROL WAS ADJUSTED FOR A 250 MA INDICATION ON THE MODULATOR METER $(90 \%$ MODULATION).
(MIKE-REMOTE SWITCH MUST BE IN REMOTE POSITION, LIMITER IN-OUT SWITCH IN 'OUT' POSITION DURING THESE MEASUREMENTS.)
5* INDICATES MIKE POTENTIOMETER CONTROL IS IN EXTREME CLOCKWISE POSITION FOR THIS MEASUREMENT.
6** INDICATES LIMITER IN-OUT SWITCH IS IN 'OUT' POSITION, MIKE REMOTE SWITCH IS IN MIKE POSITION FOR THIS MEASUREMENT.

Figure 5-3. Type 242F-2 Modulator Unit, Voltage and Resistance Measurements Diagram

SECTION VI
 PARTS LIST

6-1. FARTS LIST FOR 242F-2 TRANSMITTER.

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C207	V202 Meter Circuit Bypass	CAPACITOR: 1000 mmf ; $\pm 20 \%$; 500 WV	912093800
c208	V202 Cathode Bypass	CAPACITOR: 1000 mmf ; $\pm 20 \% ; 500 \mathrm{WV}$	912093800
C209	V202 Screen Bypass	CAPACITOR: 1000 mmf ; $\pm 20 \%$; 500 WV	912093800
C210	V202 RF Decoupling	CAPACITOR: 1000 mmf ; $\pm 20 \%$; 500 WV	912093800
C211	V203 Meter Circuit Bypass	CAPACITOR: 500 mmf ; $\pm 20 \%$; 500 WV	912093700
0212	V203 Cathode Bypass	CAPACITOR: 500 mmf ; $\pm 20 \%$; 500 WV	912093700
0213	V203 Screen Bypass	CAPACITOR: 500 mmf ; $\pm 20 \%$; 500 WV	912093700
$\mathrm{C2I}_{4}$	V203 RF Decoupling	CAPACITOR: 500 mmf ; $\pm 20 \%$; 500 WV	912093700
C215	Meter Circuit Bypass	CAFACITOR: $500 \mathrm{mmf} ; \pm 20 \% ; 500 \mathrm{WV}$	912093700
0216	V204 Cathode Bypass	CAFACITOR: 500 mmf ; $\pm 20 \%$; 500 WV	912066700
C 217	V205 Cathode Bypass	CAPACITOR: $500 \mathrm{mmf} ; \pm 20 \%$; 500 WV	912067700
C218	V204 Screen Bypass	CAPACITOR: 500 mmf ; $\pm 20 \%$; 500 WV	912093700
C219	V205 Screen Bypass	CAPACITOR: 500 mmf ; $\pm 20 \%$; 500 WV	912093700
C220	RF Decoupling	CAPACITOR: $500 \mathrm{mmf} ; \pm 20 \% ; 500 \mathrm{WV}$	912093700
C221	Crystal Calibration	CAPACITOR: Variable; 3-13 mmf 500 WV	917102900
6222	V206 Cathode	CAPACITOR: Mica button; 1000 mmf ; $\pm 20 \%$; 500 WV	912093800
C223	V206 Cathode	CAPACITOR: Mica button; 1000 mmf; $\pm 20 \% ; 500 \mathrm{WV}$	912093800
C224	v206 Cathode	CAPACITOR: Mica button; 1000 mmf ; $\pm 20 \%$; 500 WV	912093800
C225	v206 Cathode	CAFACITOR: Mica button; 1000 mmf ; $\pm 20 \% ; 500 \mathrm{WV}$	912093800
C226	v207 Cathode	CAPACITOR: Mica button; 1000 mmf; $\pm 20 \%$; 500 WV	912093800
C227	V207 Cathode	CAPACITOR: Mica button; 1000 mmf ; $\pm 20 \%$; 500 WV	912093800
C 228	v207 Cathode	CAPACITOR: Mica button; 1000 mmf ; $\pm 20 \%$; 500 WV	912093800

ITEM	CIRCUIT FUNCTION	DESCRIFTION	Part number
C229	v207 Cathode	CAPACITOR: Mica button; 1000 mmf ; $+20 \%$; 500 wV	912093800
C230	V207 Screen	CAPACITOR: 3750 mmf ;	Built into Tube Socket
C231	V206 Screen	CAPACITOR: 3750 mmf ;	Built into Tube Socket
C232	V206 Grid	CAFACITOR: Grid Assy. - RH	5611385003
6233	V207 Grid	CAFACITOR: Grid Assy. - IH	5611379003
C234	Grid Cavity Tuning	CAFACITOR:	Fabricated Grid Tuning
C235	Plate Cavity Tuning	CAFACITOR: Variable; 3-30 mmf; 8000 WV	919013700
C236	Not Used		
C237	Not Used		
C238	PA Output Coupling for Metering	CAPACITOR: $2 \mathrm{mmf} ; \pm \frac{1}{4} \mathrm{mmf} ; 500 \mathrm{WV}$	916007500
C239	CR 201 Bypass	CAPACITOR: $47 \mathrm{mmf} ; \pm 2 \%$	916436100
C240	CR 201 Bypass	CAPACITOR: 9 mmf ; $\pm \frac{1}{4} \mathrm{mmf}$;	916013300
C241	High Voltage Filter	CAPACITOR: 1000 mmf ; $\pm 20 \%$; 500 WV	913010100
C242	Not Used		
C243	V206 Cathode Feed- thru	CAPACITOR: $1000 \mathrm{mmf} ; \pm 20 \%$; 500 wV	912066800
C24 4	V207 Cathode Feedthru	CAFACITOR: $1000 \mathrm{mmf} ; \pm 20 \%$; 500 WV	912066800
C245	V207 Filament Feedthru	CAPACITOR: 1000 mmf ; $\pm 20 \%$; 500 wV	912066800
C246	v207 Screen Feedthru	CAPACITOR: $1000 \mathrm{mmf} ; \pm 20 \%$; 500 WV	912066800
C247	M201 Bypass	CAPACITOR: $1000 \mathrm{mmf} ; \pm 10 \%$; 500 WV	935405300
C2L8	B201 Phase Shift	CAPACITOR: 4 mf ; +40\% -15\%; 600 WV	962431900
C249	Plate Cavity Tuning	CAPACITOR: 75 mmf ; $\pm 5 \%$; 5000 WV	913083000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C250	Plate Cavity Tuning	CAPACITOR: 75 mmf ; $\pm 5 \%$; 5000 WV	913083000
C251	Plate Cavity Tuning	CAPACITOR: 75 mmf ; $\pm 5 \%$; 5000 WV	913083000
0252	V202 Heater Fịlter	CAPACITOR: 1000 mmf ; +20\% -0\%; 500 Wh	913014600
C253	V203 Heater Filter	CAFACITOR: 1000 mmf ; +20\% -0\%; 500 Wb	913 0146 00
6254	B+ Filter in R-f Driver	CAPACITOR: 1000 mmf ; +20\% -0\%; 500 WV	913014600
C255	B+ Filter in R-f Driver	CAPACITOR: 1000 mmf ; +20\% -0\%; 500 WV	913014600
$C 301$	V301 Grid Bypass	CAFACITOR: 3000 mmf ; $\pm 20 \%$; 500 WV	913015300
C 302	V301 Cathode Bypass	CAPACITOR: 3000 mmf ; $\pm 20 \%$; 500 WV	913015300
C303	V301 Coupling	CAFACITOR: . $01 \mathrm{mf} \pm 10 \%$; 300 WV	935211700
C304	V301 Output Coupling	CAFACITOR: . $022 \mathrm{mf} \pm 10 \%$; 400 WV	931029100
C305	V302A Coupling	CAFACITOR: $.022 \mathrm{mf} \pm 10 \%$; 400 WV	931029100
C306	Coupling to V303	CAFACITOR: . $001 \mathrm{mf} \pm 10 \%$; 400 WV	931027700
C307	V303 Filter	CAFACITOR: $150 \mathrm{mmf} \pm 2 \%$; 500 WV	912050500
C308	V303 Filter	CAPACITOR: $180 \mathrm{mmf} \pm 2 \% ; 500 \mathrm{WV}$	912051100
$C 309$	V303 Filter	CAFACITOR: $150 \mathrm{mmf} \pm 2 \%$; 500 WV	912050500
0310	V302B Plate Bypass	CAFACITOR: . $0022 \mathrm{mf} \pm 10 \%$; 400 WV	931028100
$C 311$	V302B Plate Coupling	CAPACITOR: . $022 \mathrm{mf} \pm 10 \%$; 400 WV	931029100
C312	V304 Audio Bypass	CAPACITOR: . $001 \mathrm{mf} \pm 10 \%$; 400 WV	931027700
0313	V304 Grid Coupling	CAPACITOR: . $022 \mathrm{mf} \pm 10 \%$; 400 WV	931029100
C314	Decoupling	CAFACITOR: $1 \mathrm{mf}+20 \%-10 \%$; 600 WV	961456200
0315	Decoupling	CAFACITOR: $1 \mathrm{mf}+20 \%-10 \%$; 600 WV	961456200
0316	Decoupling	CAPACITOR: $1 \mathrm{mf}+20 \%-10 \%$; 600 WV	961456200
C317	Decoupling	CAFACITOR: $1 \mathrm{mf}+20 \%-10 \% ; 600 \mathrm{WV}$	961456200
C318	Decoupling	CAPACITOR: $1 \mathrm{mf}+20 \%-10 \%$; 600 WV	961456200
C319	Decoupling	CAFACITOR: $1 \mathrm{mf}+20 \%-10 \% ; 600 \mathrm{WV}$	961456200

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
C320	T304 Simplex	CAPACITOR: $1 \mathrm{mf}+20 \%-10 \% ; 600 \mathrm{WV}$	961456200
0321	Decoupling	CAFACITOR: $3000 \mathrm{mmf} \pm 20 \%$; 500 WV	913015300
C322	T304 Simplex	CAPACITOR: $1 \mathrm{mf}+20 \%-10 \% ; 600 \mathrm{WV}$	916456200
CR101	Bias Voltage Rectifier	BRIDGE RECTIFIER: Selenium $1 R 358304$	353013400
CR201	Antenna Output Metering	RECTIFIER: Germ Diode	353002800
EV201	For Corresponding Thbe Numbers	SHIELD:	141014700
EV203			
EV204			
EV205			
EV301			
EV302			
EV304			
EV303	For V303	SHIELD:	141014300
EV206	Forces Air thru V206	CHIMNEY:	220115000
EV207	Forces Air thru V207	CHIMNEY:	220115000
F101	A-C Power Input		264000600
		$230 \text { VAC. } 10 \mathrm{~A}$	264000300
F102	Rectifier and Contro	FUSE: 115 VAC. 5 A	264409000 264408000
	Filaments	$230 \mathrm{VAC} .3 \mathrm{~A}$	264408000
F103	High Voltage	FUSE: 115 VAC. 10 A	264000300
		$230 \mathrm{VAC} .5 \mathrm{~A}$	264409000
F104	Low Voltage	FUSE: 115 VAC. 5 A ,	264409000
	Transformer	$230 \mathrm{VAC}$.	264408000
F105	Bias	FUSE: 115 VAC. . 250 A	2644102000
		230 VAC. . 125 A	264401000
F201	R-F Unit Filament	FUSE: 115 VAC. 3 A	264408000
		$230 \text { VAC. } 2 \mathrm{~A}$	264407000
F301	Modulator Filament	FUSE: Type 3AG; $250 \mathrm{~V}, 1 \mathrm{~A}$.	264405000
H2O1	Carries Air from Blower	CANVAS DUCT:	5611336002
I101	High Voltage on	INDICATOR LAMP:	262333000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
		Lens for 1101	262211000
I102	Low Voltage on	INDICATOR IAMP:	262333000
		Lens for 1102	262213000
1201	R-F Unit Filament	LIGHT	262324000
IX201		LAMP HOLDER	262033400
J101	A-C Input	CONNECTOR: 2 pin power plug	368004500
J102	A-C Output	CONNECTOR: 2 pin power receptacle	368005300
J103	Rectifier \& Control	CONNECTOR: 15 contact receptacle	366000500
J104	Rectifier \& Control	CONNECTOR: 15 contact receptacle	366000500
J105	High Voltage Output	CONNECTOR: Single contact receptacle	372109900
J106	Filter and Bias	PLUG: 12 prong Jones plug	365000800
J107	H.V. Input	CONNECTOR: Single contact receptacle	372109900
J108	H.V. Output	CONNECTOR: Single contact receptacle	372109800
J201	R-f Driver	CONNECTOR: 15 Pin receptacle or plug	371002000
J202	R-f Driver	CONNECTOR: 8 prong socket	365208000
J203	H.V. to P.A.	CONNECTOR: 1 pin receptacle	372109900
J204	P.A. Output	CONNECTOR: UG-290/U BNC	357905400
J205	Driver to P.A.	CONNECTOR: Type BNC	357910800
J206	R-F Unit	CONNECTOR: 15 contact receptacle	365000800
J207	A-C to R-F Unit	CONNECTOR: Twist-Lock plug	368000900
J208	$\mathrm{H}-\mathrm{V}$ to R-F Unit	CONNECTOR: 1 pin receptacle	372109900
J209	Receiver	CONNECTOR:	Built on Coax Relay
J210	Antenna	CONNECTOR:	Built on Coax Relay
J301	Modulated H.V. Output	CONNECTOR: Single contact H.V. receptacle - Red	372109900

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
J302	Modulator H.V. Input	CONNECTOR: Single contact H.V. receptacle - Black	372109800
J303	Modulator A-C Output	CONNECTOR: Twist-Lock receptacle	368005300
J304	Modulator A-C Input	CONNECTOR: Twist-Lock Flug	368000900
J305	Modulator	CONNECTOR: 12 prong Jones plug	365000800
J306	Modulator	CONNECTOR: 12 prong Jones plug	365000800
J307	High Impedance Mike	CONNECTOR: 4 contact receptacle	369900000
J308	Carbon Mike	CONNECTOR: 3 contact phone jack	358105000
K101	Screen Grid Protection	RELAY: $48 \mathrm{VDC} ; 4 \mathrm{~A}$	972132700
K102	Interlock	RELAY: $48 \mathrm{VDC} ; 2 \mathrm{~A}$	972132600
K103	Remote P-T-T	RELAY: $48 \mathrm{VDC} ; 1 \mathrm{~A}$	972132500
K104	Remote On-Off	RELAY: $48 \mathrm{VDC} ; 2 \mathrm{~A}$	972132600
K105	Remote Crystal Selec.	RELAY: 48 VDC ; 1 A	972132500
K201	Antenna Sharing	RELAY: 115 VAC two-position Coaxial	410010400
K202	Crystal Selector	RELAY: 48 VDC ; $1 \mathrm{~A}, 1 \mathrm{~B}$	972126800
K203	Deleted		
K204	Thermal Time Delay	RELAY: $115 \mathrm{VAC}, 30 \mathrm{sec}$.	402020700
L101	H.V. Filter Input	CHOKE: Swinging; 1200 WV	678061100
L102	H.V. Filter	CHOKE: Filter; 5 henries 1200 WV	678061000
L103	L.V. Filter	CHOKE: Filter; 5 henries 300 WV	678060900
LIO_{4}	Bias Filter	BIAS CHOKE: Filter; 10 henries 100 WV	678059600
L201	V201 Cathode Isolation	CHOKE: 500 uh	240007300
L202	V201 Plate Tank	COIL:	5610710002
L203	V202 Grid Tank	COIL:	5610710002
$\mathrm{L}_{2} \mathrm{O}_{4}$	V201 Decoupling	CHOKE: 3.3 uh	240006500

Revised 1 December 1955

ITEM	CIRCUIT FUNCTICN	DESCRIPTION	PART NUMBER
L205	V202 Plate Tank	COIL:	5610715002
L206	V203 Grid Tank	COIL:	5610715002
L207	V203 Plate Tank	COIL:	5610716002
L208	Driver Grid Tank	COIL:	5610718002
L209	V203 Decoupling	CHOKE: 1.5 uh	240006300
1210	V204 Grid Isolation	CHOKE: 12 uh	240004900
1211	V205 Grid Isolation	CHOKE: 12 uh	240004900
L212	V204 Plate Isolation	CHOKE: 2.7 uh	240001200
L213	V205 Plate Isolation	CHOKE: 2.7 uh	240001200
L214	Driver Plate Tank	COIL:	5610718002
L215	Driver Output Coupling	LINK:	Fabricated
L216	P.A. Grid Injection	INDUCTOR:	Built in Grid Line
L217	F.A. Output Pickup	INDUCTOR:	Built in Plate Line
L218	Plate Cavity H.V. Filter	RF CHOKE: 2.7 uh	240001200
L301	R-f Choke	COIL: 12 uh	240004900
L302	Audio Reactor	REACTOR: 3.75 h	678007700
M201	R-F Unit Tuning	METER: 0-1 ma	450007600
M202	P.A. Cathode Current	METER: 0-300 ma	450009000
M301	Modulator Multimeter	METER: 0-1 ma	458023700
P102	A-C Output	CONNECTOR: Twist-Lock plug	368005100
P103	Rectifier and Control	CONNECTOR: 15 prong socket	365815000
P104	Rectifier and Control	CONNECTOR: 15 prong socket	365815000
P105	H.V. Output	CONNECTOR: Single contact H.V. plug - Red	372110300

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
P106	Filter and Bias	CONNECTOR: 15 prong socket	366815000
P107	H.V. Input	CONNECTOR: Single contact H.V.	372110300
P108	H.V. Output	CONNECTOR: Single contact	372110200
P201	Driver	PLUG: 15 contact receptacle or plug	371001900
P202	Driver	PLUG: 8 contact receptacle	366408000
P203	H.V. to P.A.	PLUG: Single contact plug	372110300
P204	P.A. Output	PLUG: UG-88/U connector	357901800
P205	Driver to P.A.	PLUG: UG-88/U connector	357901800
P206	R-F Unit	PLUG: 15 prong socket	366815000
P207	A-C to R-F Unit	PLUG: Twist-Lock receptacle	368001000
P208	H.V. to R-F Unit	PLUG: Single contact plug	372110300
P301	Modulated H.V. Output	CONNECTOR: Single contact H.V. plug - Red	372110300
P302	Modulator H.V. Input	CONNECTOR: Single contact H.V. plug - Black	372110200
P303	Modulator A-C Output	CONNECTOR: Twist-Lock plug	368005100
P304	Modulator A-C Input	CONNECTOR: Twist-Lock female connector	368001000
P306		CONNECTOR: 15 prong cable connector	368815000
P		SHELL: For P2O1	371003500
R101	H.V. Supply Output	RESISTOR: $12 \mathrm{~K} ; \pm 10 \%$; 30 W	747210200
R102	H.V. Supply Output	RESISTOR: $12 \mathrm{~K} ; \pm 10 \% 30 \mathrm{~W}$	747210200
R103	H.V. Supply Output	RESISTOR: 1500 ohm ; $\pm 10 \% 10 \mathrm{~W}$	710002700
R104	Bias Supply Output	RESISTOR: 1500 ohm ; $\pm 10 \%$; 10 W	710002700
R105	I.V. Supply Bleeder	RESISTOR: $5 \mathrm{~K} ; \pm 10 \%$; 10 W	710154200
R106	L.V. Supply Bleeder	RESISTOR: $5 \mathrm{~K} ; \pm 10 \% 10 \mathrm{~W}$	710154200
R107	Il01 Voltage Dropping	RESISTOR: Wire wound 400 ohm; $\pm 10 \%$; 10W	710140020

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R108	I102 Voltage Droppins	RESISTOR: Wire wound 400 ohm ; $\pm 10 \%$; 10 W	710140020
R109	L.V. Supply Bleeder	RESISTOR: 1000 ohm ; $\pm 10 \%$; 10 W	710114200
R201	V201 Grid	RESISTOR: 100 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745117000
R202	V201 Meter Shunt	RESISTOR: 10 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745112800
R203	V201 Cathode Bias	RESISTOR: $330 \mathrm{ohm} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745106500
R204	V201 Screen Dropping	RESISTOR: 3300 ohm ; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745110700
R205	V202 Grid	RESISTOR: 47 K ohm; $\pm 10 \%$; 1 W	745315600
R206	V202 Meter Shunt	RESISTOR: 220 ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745106200
R207	V202 Screen Dropping	RESISTOR: $1200 \mathrm{ohm} ; \pm 10 \%$; 2 W	745535600
R208	V202 Screen Dropping	RESISTOR: 68 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745142900
R209	V203 Grid	RESISTOR: 33 K ohm; $\pm 10 \%$; 1 W	745341500
R210	V203 Meter Shunt	RESISTOR: 560 ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745106200
R211	RF Dropping	RESISTOR: 500 ohm ; $\pm 10 \%$; 10 W	710150000
R212	V203 Cathode	RESISTOR: 1200 ohm; $\pm 10 \%$; 2 W	745535600
R213	V203 Screen Dropping	RESISTOR: 47 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745142200
R214	V204 Grid	RESISTOR: 22 K ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745114200
R215	V205 Grid	RESISTOR: 22 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745114200
R216	Meter Shunt	RESISTOR: 330 ohm ; $\pm 10 \%$ \% $1 / 2 \mathrm{~W}$	745104400
R217	V204 Cathode Bias	RESISTOR: 300 ohm ; $\pm 10 \% ; 10 \mathrm{~W}$	710130010
R221	Balance - P.A. Grids	RESISTOR: Variable resistor 5 K ; 2 W	750050100
R222	F.A. Screen Metering	RESISTOR: 10 ohm ; $\pm 5 \%$ \% $1 / 2 \mathrm{~W}$	745100200
R223	P.A. Grid Metering	RESISTOR: 56 ohm ; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745103400
R224	P.A. Grid Metering	RESISTOR: 56 ohm ; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745103400
R225	P.A. Grid Limiting	RESISTOR: 1000 ohm; $\pm 10 \%$; 2 W	745909700
R226	F.A. Grid Limiting	RESISTOR: 1000 ohm; $\pm 10 \%$; 2 W	745909700
R227	M201 Kultiplier	RESISTOR: 1000 ohm ; $+10 \%$; $1 / 2 \mathrm{~W}$	745108600

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R228	P.A. Cathode Metering	RESISTOR: 18 ohm; $\pm 10 \%$; 2 W	745902400
R229	P.A. Cathode Meterin¢	RESISTOR: 18 ohm ; $\pm 10 \%$; 2 W	745902400
R230	Not Used		
R231	P.A. Screen	RESISTCR: 500 ohm ; $\pm 10 \%$; 10 W	710150020
R232	P.A. Output Metering	RESISTOR: 2700 ohm ; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745110400
R233	P.A. Output Metering	RESISTOR: 22 K ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745114200
R234	P.A. Output Metering	RESISTOR: $3900 \mathrm{ohm} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745111100
R235	V202 Cathode	RESISTOR: 1200 ohm; $\pm 10 \%$; 2 W	745535600
R236	V203 Cathode	RESISTOR: 1200 ohm; $\pm 10 \%$; 2 W	745535600
R301	Remote Level	RESISTOR: Variable; $100 \mathrm{~K} \pm 20 \%$; 2 W	380032200
R302	V301 Grid (2)	RESISTOR: $10 \mathrm{~K} ; \pm 10 \%$; $1 / 2 \mathrm{~W}$	745112800
R303	V301 Cathode (8)	RESISTOR: 1000 ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745108600
R304	V301 Plate (6)	RESISTOR: $47 \mathrm{~K} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745115600
R305	V301 Grid (2)	RESISTOR: $100 \mathrm{~K} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745117000
R306	V301 Cathode (3)	RESISTOR: 1000 ohm ; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745108600
R307	V301 Plate (1)	RESISTOR: 220 K ; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745118400
R308	V302 Grid (7)	RESISTOR: Variable 100 K ; $\pm 20 \%$; 2 W	380032200
R309	V302 Cathode (8)	RESISTOR: 2200 ohm; $\pm 5 \%$; 1/2 W	745110000
R310	V302 Flate (6)	RESISTOR: $220 \mathrm{~K} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745118400
R311	Clipper Isolation	RESISTOR: $100 \mathrm{~K} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745117000
R312	V302 Grid (2)	RESISTOR: $100 \mathrm{~K} ; \pm 10 \%$; $1 / 2 \mathrm{~W}$	745117000
R313	Voltage Divider	RESISTOR: 150 ohm ; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745105100
R314	Voltage Divider	RESISTOR: 150 ohm; $\pm 10 \%$; 1/2 W	745105100
R315	N302 Cathode (3)	RESISTOR: 2200 ohm ; \pm 5\%; 1/2 W	745110000
R316	N302 Plate (1)	RESISTOR: $47 \mathrm{~K} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745115600
R317	MOD Level	RESISTOR: Variable; $100 \mathrm{~K} \pm 20 \mathrm{~F} ; 2 \mathrm{~W}$	380032200

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
R318	V304 Grid (2)	RESISTOR: $1 \mathrm{Meg} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745121200
R319	V304 Cathode (3)	RESISTOR: 3300 ohm ; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745110700
R320	V304 Plate (1)	RESISTOR: 22 K ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745114200
R321	V340 Cathode (8)	RESISTOR: $100 \mathrm{~K} \mathrm{ohm} ; \pm 10 \% ; 1 / 2 \mathrm{~W}$	745117000
R322	V304 Cathode (8)	RESISTOR: 820 ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745108300
R323	V306 Grid (5)	RESISTOR: 82 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745116700
R324	V305 Grid (5)	RESISTOR: 82 K ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745116700
R325	B+ Decoupling	RESISTOR: 1800 ohm - $\pm 10 \%$; 2 W	745910800
R326	B+ Decoupling	RESISTOR: 47 K ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745115600
R327	B+ Decoupling	RESISTOR: 22 K ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745114200
R328	B + Decoupling	RESISTOR: 47 K ohm; $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745115600
R329	B+ Decoupling	RESISTOR: 47 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745115600
R330	Voltage Divider	RESISTOR: 16 K ohm; $\pm 5 \%$; 10 W	710025600
R331	Voltage Divider	RESISTOR: 16 K ohm: $\pm 5 \%$; 10 W	710025600
R332	Metering Precision	RESISTOR: 751 K ohm; $\pm 1 \%$; 1 W	705301100
R333	Metering Frecision	RESISTOR: 751 K ohm: $\pm 1 \%$; 1 W	705301100
R334	Metering Precision	RESISTCR: $10 \mathrm{~K} 0 \mathrm{hm} ; \pm 10 \%$; 1 W	745913900
R335	Metering Precision	RESISTOR: 500 K ohm; $\pm 1 \%$; 1 W	705301200
R336	Metering Precision	RESISTOR: 100 K ohm; $\pm 1 \%$; I W	705301000
R337	Metering Frecision		747933300
R338	Metering Precision	RESISTOR: 954 ohm; $\pm 1 \%$; 2 W	747933200
R339	V302 Loading	RESISTOR: 100 K ohm; $\pm 10 \% ; 1 / 2 \mathrm{~W}$	745117000
S101	Power On-Off	SWITCH: SPST	266306000
S102	Remote-Local	SWITCH: 4 PDT	266007200
S103	On-Push to Talk	SWITCH: SPST	266306000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	PART NUMBER
S104	Operate - Tune	SWITCH: SPST	266306000
S201	Channel 1 Channel 2	SWITCH: SPST	266306000
S202	Cathode I Cathode 2	SWITCH: SPST	266306000
S203	Meter, Circuit Selector	SWITCH: Rotary	259065100
S301	Limiter	SWITCH: DPDT	266306000
S302	Remote - Mike	SWITCH: DFDT	266306000
S303	Metering	SWITCH: Rotary, 2 wafer 4 position	259027000
T101	H.V. Plate	TRANSFORMER: Plate; 1000 V at 775 ma secondary	672060800
T102	L.V. Plate	TRANSFORMER: Plate; 270 V at 335 ma secondary	672060700
T103	H.V. \& L.V. Filament	TRANSFORMER: Filament 2.5 V	672060200
T104	Bias Supply	TRANSFORMER: 50 V at 60 ma	672059400
T201	R-F Unit Filament	$\begin{aligned} & \text { TRANSFORMER: } 6.3 \mathrm{~V}, 1.75 \mathrm{a} ; \\ & 6.0 \mathrm{~V}, 5.3 \mathrm{a} \end{aligned}$	672060000
T301	Modulation	TRANSFORMER: (1-3) 5700 ohm ; (4-5) $2500 \mathrm{ohm} ;(6-7) 150 \mathrm{~V}$.	677060300
T302	Modulator Driver	TRANSFORMER: (1-3) 3000 ohm ; (4-6) 600 ohm .	677060500
T303	Modulator Interstage	TRANSFORMER: (1-3) 10K; (3-5) 160K.	677060400
T304	Modulator Filament	TRANSFORMER: $6.3 \mathrm{~V}, 6 \mathrm{a} ; 6.3 \mathrm{~V}, 8 \mathrm{a}$	672060100
T305	Audio Input	TRANSFORMER: (1-2) 82 ohm ; (3-6) 600 ohm ; (7-8) 1 M .	677054800
V101	H.V. Rectifier	TUBE: Type 866A	257007600
V102	H.V. Rectifier	TUBE: Type 866A	257007600
V103	L.V. Rectifier	TUBE: Type 866A	257007600
V 104	L.V. Rectifier	TUBE: Type 866A	257007600

ITEM	CIRCUIT FUNCTION	DES CRIPTIION	PART NUMBER
V201	Oscillator	TUBE: 5686	253000900
V202	Tripler	TUBE: 5686	253000900
V203	Doubler	TUBE: 5686	253000900
v204	Driver	TUBE: 5686	253000900
v205	Driver	TUBE: 5686	253000900
V206	Power Amplifier	TUBE: Type $4 \times 250 \mathrm{~B}$	256011200
V207	Power Amplifier	TUBE: Type 4x250B	256011200
V301	Audio Amplifier	VACUUM TUBE: Type 5751	253001200
V302	Amplifier-Limiter	VACUUM TUBE: Type 5814	253001300
V303	Detector	VACUUM TUBE: Type 5726	253000300
V304	Amplifier	VACUUM TUBE: Type 5814	253001300
V305	Driver of Modulator	VACUUM TUBE: Type 6B4G	255012400
V306	Driver of Modulator	VACUUM TUBE: Type 6B4G	255012400
V307	Modulator	VACUUM TUBE: Type 811a	256005300
V308	Modulator	VACUUM TUBE: Type 811a	256005300
XF101	For F101	HOIDER:	265101900
XF102	For Fl02.	HOLDER:	265101900
XF103	For Fl03	HOLDER:	265101900
XFIO4	For FlO_{4}	HOLDER:	265101900
XF105	For F105	HOLDER:	265101900
XF201	For F201	HOLDER:	265101900
XF301	For F301	HOLDER:	265101900
XII01	For 1101	HOLDER:	262003400
XII02	For Il02	HOLDER:	262003400
XI201	$\begin{aligned} & \text { For I201 } \\ & \text { For I201 } \end{aligned}$	HOLDER: JEWEL	$\begin{array}{lll} 262 & 0334 & 00 \\ 262 & 2130 & 00 \end{array}$

ITEM	CIRCUIT FUNCTION	DESCRIPTION	FART NUMBER
XV101	For V101	SOCKET:	220118500
XV102	For V102	SOCKET:	220118500
XV103	For V103	SOCKET:	220118500
XV104	For V104	SOCKET:	220118500
XV201 XV202	For Corresponding Tube numbers	SOCKET: 9 pin miniature	220110400
XV203			
XV204 XV205			
XV206		SOCKET:	5611386002
XV207		SOCKET:	5611386002
XV301	For V301	SOCKET:	220110300
XV302	For V302	SOCKET:	220110300
XV303	For V303	SOCKET:	220111100
XV304	For V304	SOCKET:	220110300
XV305	For V305	SOCKET:	220112100
Xv306	For V306	SOCKET:	220112100
XV307	For V307	SOCKET:	220101800
XV308	For V308	SOCKET:	220101800
Y201	Oscillator	CRYSTAL: CR-27/U	Depends on Frequency
Y202	Oscillator	CRYSTAL: CR-27/U	Depends on Frequency
Z201	Crystal	OVEN:	292006300

6-2. PARTS LIST FOR 35D-2 FILTER.

ITEM	DESCRIPTION	PART NUMBER
$\mathrm{ClO1}$	CAPACITOR: Fixed, $10 \mathrm{mmf}, \pm 10 \%$; 5000 WV	913076500
Cl02	CAPACITOR: Fixed, $10 \mathrm{mmf}, \pm 10 \%$; 5000 WV	913076500
C103	CAFACITOR: Tubular ceramic, $9.0 \mathrm{mmf}, \pm 1 / 40 \%$; 500 WV	916013300
ClO 4	$\begin{aligned} & \text { CAPACITOR: Tubular ceramic, } 8.0 \mathrm{mmf}, \pm 1 / 4 \% ; \\ & 500 \mathrm{WV} \end{aligned}$	916012900
C105	CAPACITOR: Fixed ceramic, $3 \mathrm{mmf}, \pm 1 / 2 \%$; 5000 WV	913205600
C106	```CAPACITOR: Tubular ceramic, 8.0 mmf, }\pm1/4% 500 WV```	916436200
C107	CAPACITOR: Fixed, $10 \mathrm{mmf}, \pm 10 \%$; 5000 WV	913076500
Cl08	CAFACITOR: Fixed, $10 \mathrm{mmf}, \pm 10 \%$; 5000 WV	913076500
C109	CAFACITOR: Ceramic, 910 mmf , $\pm 1 / 4 \%$; 500 WV	916013300
Cll0	CAFACITOR: Ceramic $10.0 \mathrm{mmf}, \pm 1 / 4 \% ; 500 \mathrm{WV}$	916013700
6111	CAPACITOR: Ceramic, $8.0 \mathrm{mmf}, \pm 1 / 4 \% ; 500 \mathrm{WV}$	916012900
Cll2	CAFACITOR: Ceramic, $8.0 \mathrm{mmf}, \pm 1 / 4 \% ; 500 \mathrm{WV}$	916012900
Cl13	CAPACITOR: Ceramic, $8.0 \mathrm{mmf}, \pm 1 / 4 \% ; 500 \mathrm{WV}$	916012900
Cll4	CAPACITOR: Ceramic, $8.0 \mathrm{mmf}, \pm 1 / 4 \%$; 500 WV	916012900
C115	CAFACITOR: Ceramic, $9.0 \mathrm{mmf}, \pm 1 / 4 \%$; 500 WV	916013300
$J 101$	CONNECTOR: UG-58/U	357900300
J102	CONNECTOR: UG-58/U	357900300
L101	COIL ASSEMBLY: 2 turns	5612637002
L102	COIL ASSEMBLY: $21 / 2$ turns	5612635002
L103	COIL ASSEMBLY: $21 / 2$ turns	5612636002
LlO_{4}	COIL ASSEMBLY: $21 / 2$ turns	5612637002

SECTION VII

ILLUSTRATIONS

Figure 7-1A. Type 242F-2 R-F Unit, Front View

Figure 7-2A. Type 242F-2 R-F Unit, Rear View, Dust Cover Removed

Figure 7-3A. Type 242F-2 R-F Driver Subchassis, Rear View, Shield Removed

Figure 7-4A. Power Amplifier Assembly, Plate Cover Removed

Figure 7-5A. Power Amplifier Assembly, Grid Cover Removed

Figure 7-6. Type 242F-2 Modulator Unit, Front View

Figure 7-7. Type 242F-2 Modulator Unit, Rear View, Dust Cover Removed

Figure 7-8. Type 242F-2 Filter and Bias Supply Unit, Front View

Figure 7-9. Type 242F-2 Filter and Bias Supply Unit, Rear View, Dust Cover Removed

Figure 7-10. Type 242F-2 Rectifier and Control Unit, Front View

Figure 7-11A. Type 242F-2 Rectifier and Control Unit, Rear View, Dust Cover Removed

Figure 7-12. Type 242F-2 Transmitter, Rear View, Dust Cover On

Figure 7-13A. Type 35D-2 Low Pass Filter, Cover Removed

