MASSACHUSETTS INSTITUTE OF TECHNOLOGY RADIATION LABORATORY SERIES

Louis N. Ridenour, Editor-in-Chief

THRESHOLD SIGNALS

φξ 1. 2/1/136

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief GEORGE B. COLLINS, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBERT M. JAMES, JULIAN K. KNIPP, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

- 1. RADAR SYSTEM ENGINEERING-Ridenour
- 2. RADAR AIDS TO NAVIGATION-Hall
- 3. RADAR BEACONS-Roberts
- 4. LORAN-Pierce, McKenzie, and Woodward
- 5. Pulse Generators—Glasoe and Lebacaz
- 6. MICROWAVE MAGNETRONS-Collins
- 7. KLYSTRONS AND MICROWAVE TRIODES-Hamilton, Knipp, and Kuper
- 8. PRINCIPLES OF MICROWAVE CIRCUITS-Montgomery, Dicke, and Purcell
- 9. MICROWAVE TRANSMISSION CIRCUITS-Ragan
- 10. WAVEGUIDE HANDBOOK-Marcuvitz
- 11. TECHNIQUE OF MICROWAVE MEASUREMENTS-Montgomery
- 12. MICROWAVE ANTENNA THEORY AND DESIGN-Silver
- 13. Propagation of Short Radio Waves-Kerr
- 14. MICROWAVE DUPLEXERS-Smullin and Montgomery
- 15. CRYSTAL RECTIFIERS-Torrey and Whitmer
- 16. MICROWAVE MIXERS-Pound
- 17. COMPONENTS HANDBOOK-Blackburn
- 18. VACUUM TUBE AMPLIFIERS-Valley and Wallman
- 19. Waveforms-Chance, Hughes, MacNichol, Sayre, and Williams
- ELECTRONIC TIME MEASUREMENTS—Chance, Hulsizer, MacNichol, and Williams
- 21. Electronic Instruments-Greenwood, Holdam, and MacRae
- 22. CATHODE RAY TUBE DISPLAYS-Soller, Starr, and Valley
- 23. MICROWAVE RECEIVERS-Van Voorhis
- 24. THRESHOLD SIGNALS-Lawson and Uhlenbeck
- 25. THEORY OF SERVOMECHANISMS—James, Nichols, and Phillips
- 26. RADAR SCANNERS AND RADOMES-Cady, Karelitz, and Turner
- 27. COMPUTING MECHANISMS AND LINKAGES-Svoboda
- 28. INDEX-Henney

THRESHOLD SIGNALS

Edited by

JAMES L. LAWSON

RESEARCH ASSOCIATE, GENERAL ELECTRIC RESEARCH LABORATORY SCHENECTADY, NEW YORK

GEORGE E. UHLENBECK PROFESSOR OF PHYSICS, UNIVERSITY OF MICHIGAN

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE

FIRST EDITION

NEW YORK TORONTO LONDON
McGRAW-HILL BOOK COMPANY, INC.

THRESHOLD SIGNALS

COPYRIGHT, 1950, BY THE McGraw-Hill Book Company, Inc.

PRINTED IN THE UNITED STATES OF AMERICA

All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

Foreword.

THE tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields, and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of other scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together even though often in widely separated laboratories that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicted.

L. A. DUBRIDGE.

Preface

When the plan for this book was made the authors hoped that it would be possible to present a more or less complete account of the experiments and the theoretical ideas pertaining to the problem of the detectability of a signal in noise. However, because it became clear that the literature on the subject was so large and that we had no convenient access to the results of a great deal of work in progress at other institutions, it soon appeared that we would be unable to realize our original plan of giving a critical account of the whole subject. Accordingly we decided to limit ourselves to describing as completely as possible the work done at the Radiation Laboratory during the war, with sufficient introductory material to make the account intelligible. The authors regret that this decision has necessitated the omission of many interesting investigations and calculations.

Another aim of the authors was always to confront the theoretical ideas with the experimental investigations and in this way achieve some kind of unification of theory and experiment, which the authors felt was so often lacking in the existing literature. We feel that we have done so with some success, particularly in Chaps. 8 and 10, though elsewhere we may have fallen short of this aim.

This book is the result of the cooperative effort of many people. On the experimental side many of the investigations were performed by R. Meijer, S. G. Sydoriak, V. Josephson, and especially by R. H. Ashby, L. B. Linford, and A. M. Stone. The latter two have also helped considerably with the editing of the material in this book. On the theoretical side the authors wish to acknowledge the help given by H. Goldstein, A. J. F. Siegert, and Ming Chen Wang. The first two were responsible for most of the work described in Chap. 6 and helped with the writing of that chapter. The theory of the ideal observer described in Chap. 7 was initiated by Dr. Siegert. The authors are especially grateful to Dr. Ming Chen Wang who performed the work described in Chap. 13 and who also helped with the calculations and the writing of nearly all the other theoretical chapters.

Cambridge, Mass. November, 1949 JAMES L. LAWSON GEORGE E. UHLENBECK

Contents

FOREW	ORD		v
PREFAC	E		vii
Снар. 1.	IN.	TRODUCTION	1
Снар. 2.		PES OF SIGNALS AND METHODS FOR THEIR RECEP-	
TION.			3
Continuo		OUS-WAVE SIGNALS	3
	2.1	Unmodulated Continuous-wave Signal	3
	$2 \cdot 2$	Amplitude Modulation	5
	2.3	Frequency-modulated Continuous-wave Signals	13
	2.4		17
Puls	ed S	IGNALS	13
	2.5	Infinite Pulse Trains	18
	2.6		19
	2.7		24
	2·8	•	30
Снар. 3.	тн		33
	3.1		33
	3.2		35
	3.3		39
	3.4		$\frac{33}{42}$
	3.5		46
	3.6	•	50
	3.7		53
	3.8		56
Снар. 4.	BA	SIC ORIGINS OF INTERNAL NOISE	64
THER	RMAL	Noise	64
	4.1	Statistical Derivation of the Thermal Noise Spectrum	64
	4.2	The Gaussian Character of Thermal Noise	66
	4.3	Kinetic Derivation of the Thermal Noise Spectrum	69
	4.4		71
	4.5		76
Noisi	ε Dτ	DE TO DISCRETENESS OF THE ELECTRONIC CHARGE	79
	4.6	Derivation of the Schottky Formula	79

	4·7 4·8	Space Charge Depression of the Shot Noise	83
		Spectrum	89
	4.9	Partition Noise	91
	4.10	Transit-time Effects in Triodes and Multicollector Tubes; Induced	
		Grid Noise	93
Addi	TION	AL Sources of Noise	95
	4.11	Current Noise; Flicker Effect; Positive Ion Fluctuations	95
Снар. 5.	RE	CEIVER NOISE	98
	$5 \cdot 1$	Introduction	98
	$5 \cdot 2$	Antenna Noise	103
	5.3	Converter Noise	108
	5.4	Local-oscillator Noise	112
	5.5	Intermediate-frequency Noise	115
	5.6	Noise Cancellation Schemes	122
Снар. 6.	EX	TERNAL NOISE SOURCES; CLUTTER	124
	6.1	Origin and Description of "Clutter"	124
	6.2	Derivation of the First Two Probability Distributions	
	6.3	The Probability Distributions When a Constant Signal Is Present	130
	6.4	Experimental Techniques for Clutter Measurements	132
	6.5	Experimental Results	
	6.6	Classification of Interference	143
	6.7	Simple Types of Interference	144
	6.8	Complex Types of Interference	145
Chap. 7. NOISE		E DETECTABILITY OF SIGNALS IN THE PRESENCE OF	149
Тне	ORETI	CAL Introduction	149
	7 ·1	Definition of the Signal Threshold	
	7.2	Probability Distributions and Spectra	
	7.3	Detectability Criteria	161
	7.4	What Is the Best Method for Detecting a Radar Signal	165
	7.5	Theory of the Ideal Observer	
	7.6	Mathematical Appendix	173
Снар. 8.	PU	LSE TRAINS IN INTERNAL NOISE	
	8.1	Standards for the Measurement of Signal Power	
	8.2	A (Synthetic) System for Experimental Purposes	179
	8.3	The Determination of Threshold-signal Setting	185
	8.4	System Parameters and Scaling	193
	8.5	Influence of Trace Brightness, Average Noise Deflection, Sweep	
		Direction	197
	8.6	Dependence on the Product of I-f Bandwidth and Pulse Length	199
	8.7	Effects of Video Bandwidth; Sweep Speed, Focus	
	8.8	The Dependence upon Repetition Frequency	222
	8.9	The Influence of the Signal Presentation Time and of the Screen	
		Matarial	230

	8-10	The Dependence upon the Number and Spacing of Possible Signal	
		Positions and upon the Attention Interval	232
	8.11	The Influence of Video Mixing	236
CHAP. 9.	PUI	LSE TRAINS IN INTERNAL NOISE; OTHER METHODS OF	000
Inter	YTISN	-MODULATED DISPLAY (PPI)	238
	9-1	Similarities to the A-scope	238
	9.2	The Influence of Scanning	241
	9.3	The Influence of Limiting	246
	9.4	Video Mixing	248
	9 ·5	Signal Fluctuations and Target Movement	249
Aura	L AN	D METER METHODS OF DETECTION	252
	9.6	Theoretical Results for the Signal Threshold	252
	9.7	The Equivalence with the Visual Method of Detection	254
Снар. 10.		ODULATED PULSE TRAINS	
_	0.1	The Receiving System	257
	0.2	Experimental Results	264
	0.3	Theoretical Derivation of the Boxcar Spectrum of Noise Alone	273
10	0.4	Theoretical Derivation of Signal-modulation Threshold	278
Отне	к Ми	ETHODS OF MODULATION	288
10	0.5	Propeller Modulation	288
10	0.6	Theoretical Analysis of a Pulse-width Modulation System	. 292
Снар. 11.	TH	IRESHOLD PULSED SIGNALS IN CLUTTER	297
Intro	DUCT	non	297
11	1.1	Comparison between Clutter and Noise	907
	1.2	Threshold Signal in the Absence of Saturation.	291
	1.3	Threshold Signals in the Presence of Saturation.	300
Manue		FOR THE REDUCTION OF CLUTTER SATURATION	
	1.4	Instantaneous AGC	303
	1.5	Logarithmic I-f Amplifier	306
	l·6	Video Saturation	308
	l·7 ′	The Time-varied Gain Control	311
11	l•8 ∶	Efficiency of Circuits Used for Reduction of Clutter Saturation	313
Movin	G T	arget Indication	324
11	[. 9 (General Description	324
11	·10 '	Threshold Signals in the MTI System	329
Снар. 12.		RESHOLD SIGNALS IN ELECTRONIC INTERFERENCE	
THRES	HOLD	SIGNALS IN UNMODULATED CONTINUOUS-WAVE INTERFERENCE	335
12	2-1	Effect of C-w Interference	335

CONTENTS

12.2 Video Overloading	I
12.3 Intermediate-frequency Overloading	3
12.4 Dependence of Threshold Signal upon C-w Interference Frequency	
THRESHOLD SIGNALS IN NOISE-MODULATED CONTINUOUS-WAVE INTERFER-	
ENCE	3
12.5 Continuous-wave Interference Amplitude Modulated by Noise 35	Ł
THRESHOLD SIGNALS IN PULSED INTERFERENCE	ò
12-6 Description of Pulsed Interference	3
12.7 Railing Interference	j
12-8 Randomly Spaced Interference Pulses	
CHAP. 13. THRESHOLD MODULATIONS FOR AMPLITUDE-MODU-	
LATED AND FREQUENCY-MODULATED CONTINUOUS-WAVE	
SYSTEMS	7
13.1 Introduction	7
13.2 The Minimum Detectable Amplitude Modulation	
13.3 The Noise Spectrum for an F-m Receiver)
13.4 The Spectrum of Signal Plus Noise for an F-m Receiver 374	
13.5 The Minimum Detectable Frequency Modulation	
INDEX	5