621.8

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief George B. Collins, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBERT M. JAMES, JULIAN K. KNIPF, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

- 1. RADAR SYSTEM ENGINEERING-Ridenour
- 2. RADAR AIDS TO NAVIGATION—Hall
- 3. RADAR BEACONS-Roberts
- 4. LORAN-Pierce, McKenzie, and Woodward
- 5. Pulse Generators—Glasoe and Lebacqz
- 6. MICROWAVE MAGNETRONS-Collins
- 7. KLYSTRONS AND MICROWAVE TRIODES-Hamilton, Knipp, and Kuper
- 8. Principles of Microwave Circuits-Montgomery, Dicke, and Purcell
- 9. MICROWAVE TRANSMISSION CIRCUITS—Ragan
- 10. WAVEGUIDE HANDBOOK-Marcuvitz
- 11. TECHNIQUE OF MICROWAVE MEASUREMENTS-Montgomery
- 12. MICROWAVE ANTENNA THEORY AND DESIGN-Silver
- 13. PROPAGATION OF SHORT RADIO WAVES-Kerr
- 14. MICROWAVE DUPLEXERS-Smullin and Montgomery
- 15. CRYSTAL RECTIFIERS-Torrey and Whitmer
- 16. MICROWAVE MIXERS-Pound
- 17. Components Handbook—Blackburn
- 18. VACUUM TUBE AMPLIFIERS-Valley and Wallman
- 19. WAVEFORMS-Chance, Hughes, MacNichol, Sayre, and Williams
- 20. Electronic Time Measurements—Chance, Hulsizer, MacNichol, and Williams
- 21. Electronic Instruments—Greenwood, Holdam, and MacRae
- 22. CATHODE RAY TUBE DISPLAYS-Soller, Starr, and Valley
- 23. MICROWAVE RECEIVERS-Van Voorhis
- 24. THRESHOLD SIGNALS-Lawson and Uhlenbeck
- 25. Theory of Servomechanisms-James, Nichols, and Phillips
- 26. RADAR SCANNERS AND RADOMES—Cady, Karelitz, and Turner
- 27. COMPUTING MECHANISMS AND LINKAGES-Svoboda
- 28. INDEX-Henney

THEORY OF SERVOMECHANISMS

Edited by

HUBERT M. JAMES

PROFESSOR OF PHYSICS
PURDUE UNIVERSITY

NATHANIEL B. NICHOLS

DIRECTOR OF RESEARCH
TAYLOR INSTRUMENT COMPANIES

RALPH S. PHILLIPS

ASSOCIATE PROFESSOR OF MATHEMATICS UNIVERSITY OF SOUTHERN CALIFORNIA

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE

FIRST EDITION

NEW YORK-TORONTO-LONDON
MCGRAW-HILL BOOK COMPANY, INC.
1947

M 41 v. 25 c. 7

THEORY OF SERVOMECHANISMS

COPYRIGHT, 1947, BY THE
McGraw-Hill Book Company, Inc.
PRINTED IN THE UNITED STATES OF AMERICA

All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

Foreword

The tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields, and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of other scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together even though often in widely separated laboratories that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DuBridge.

EDITORIAL STAFF

HUBERT M. JAMES
NATHANIEL B. NICHOLS
RALPH S. PHILLIPS

CONTRIBUTING AUTHORS

C. H. DOWKER
IVAN A. GETTING
WITOLD HUREWICZ
HUBERT M. JAMES
EARL H. KROHN

WARREN P. MANGER
CARLTON W. MILLER
NATHANIEL B. NICHOLS
RALPH S. PHILLIPS
PETER R. WEISS

Contents

FOREWORI	D BY L. A. DuBridge	. vi
PREFACE.		ix
CHAP. 1 SE	RVO SYSTEMS	1
1.1.	Introduction	1
1.2.	Types of Servo Systems.	2
1.3.	Analysis of Simple Servo Systems	9
1.4.	History of Design Techniques	15
1.5.	Performance Specifications	17
Снар. 2. Мл	ATHEMATICAL BACKGROUND	23
Introduc	CTION	23
FILTERS		24
2.1.	Lumped-constant Filters	24
2.2.	Normal Modes of a Lumped-constant Filter.	26
2 ·3.	Linear Filters	28
THE WEI	GHTING FUNCTION	30
2.4.	Normal Response of a Linear Filter to a Unit-impulse Input	30
2 ·5.	Normal Response of a Linear Filter to an Arbitrary Input	33
2.6.	The Weighting Function	35
2.7.	Normal Response to a Unit-step Input	37
2.8.	Stable and Unstable Filters	38
THE FRE	QUENCY-RESPONSE FUNCTION	40
2.9.	Response of a Stable Filter to a Sinusoidal Input	40
2.10.	Frequency-response Function of a Lumped-constant Filter	42
2 ·11.	The Fourier Integral	43
2.12.	Response of a Stable Filter to an Arbitrary Input	48
2.13.	Relation between the Weighting Function and the Frequency- response Function	48
2.14.	Limitations of the Fourier Transform Analysis	50
THE LAPI	LACE TRANSFORM	51
2.15.	Definition of the Laplace Transform	51
	Properties of the Laplace Transform	53
	Use of the Laplace Transform in Solution of Linear Differential	
	Equations.	56

CONTENTS

Тн	E TRA	nsfer Function	58
	2.18.	Definition of the Transfer Function	58
		Transfer Function of a Lumped-constant Filter	59
		The Stability Criterion in Terms of the Transfer Function	61
Sys	TEMS	WITH FEEDBACK	62
	2.21.	Characterization of Feedback Systems	62
	2.22.	Feedback Transfer Function of Lumped-constant Servos	64
	2.23.	The Feedback Transfer Locus.	66
	2.24.	Relation between the Form of the Transfer Locus and the Positions of the Zeros and Poles	67
	2.25.	A Mapping Theorem	68
	2.26.	The Nyquist Criterion	70
		Multiloop Servo Systems	73
Снар. 3.	SE	RVO ELEMENTS	76
CHAI. U.			
	3.1.	Introduction	76
	3.2.	Error-measuring Systems	77
	3·3.	Synchros	78 79
	3.4.	Data System of Synchro Transmitter and Repeater	79
	3.5.	Synchro Transmitter with Control Transformer as Error-measur-	
	0.0	ing System	82
	3.6.	Coercion in Parallel Synchro Systems.	88
	3.7.	Rotatable Transformers.	92
	3.8.	Potentiometer Error-measuring Systems	95
	3 ·9.	Null Devices	101
		Motors and Power Amplifiers	
		Modulators	
		Phase-sensitive Detectors	
		Networks for Operating on D-c Error Voltage.	
		Networks for Operating on A-c Error Signal	
		Operation on θ_0 —Feedback Filters	
	3 ⋅16.	Gear Trains	130
Снар. 4.	GE	NERAL DESIGN PRINCIPLES FOR SERVOMECHANISMS.	134
	4.1.	Basic Equations	134
	4.2.	Responses to Representative Inputs	138
	4.3.	Output Disturbances	
	4.4.	Error Coefficients	
Bas	іс De	SIGN TECHNIQUES AND APPLICATION TO A SIMPLE SERVO	151
	4.5.	Introduction	151
	4.6.	Differential-equation Analysis	
	4.7.	Transfer-locus Analysis. The Nyquist Diagram.	158
	4 8.	Attenuation-phase Analysis	
Атт		TION-PHASE RELATIONSHIPS FOR SERVO TRANSFER FUNCTIONS	
	4.9.	Attenuation-phase Relationships.	
		Construction and Interpretation of Attenuation and Phase Dia-	
	L (O.	grams	

CONTENTS

	4.11.	Decibel-phase-angle Diagrams and Fi	requency-response	Char-	
		acteristics			
		Multiple-loop Systems			
	4 ·13.	Other Types of Transfer Loci			195
Equ	ALIZA	TION OF SERVO LOOPS			196
	4.14.	General Discussion of Equalization			196
	4.15.	Lead or Derivative Control			197
	4.16.	Integral Equalization			203
	4 ·17.	Equalization Using Subsidiary Loops.	·		208
App	LICAT	ons			212
	4.18.	SCR-584 Automatic-tracking Loop			212
		Servo with a Two-phase Motor			
Снар. 5.	FII	TERS AND SERVO SYSTEMS WITH	PHISED DATA		931
JHAP. J.					
	5-1.	Introductory Remarks			231
Filt	ers v	VITH PULSED DATA			232
	5 ·2.	The Weighting Sequence			232
	5 ⋅ 3 .	Stability of Pulsed Filters			233
	5.4.	Sinusoidal Sequences			23 6
	5 · 5 .	Filter Response to a Sinusoidal Input			238
	5 ·6.	The Transfer Function of a Pulsed Filter			240
	5 · 7 .	Stability of a Pulsed Filter, and the Singu Function	lar Points of Its Tr	ansfer	242
	5.8.	The Transfer Function Interpreted as			242
	J -0.	Functions.			244
Filt	ERS V	VITH CLAMPING			245
	5.9.	The Concept of Clamping			245
		Transfer Functions of Some Special Filter			
		Transfer Function of a Filter with Clam-			
		Simplified Transfer Functions for $ \alpha_k T_r $			
		Filters with Switches.			
Ser	vos w	ITH PULSED INPUT			254
	5 ·14.	General Theory of Pulsed Servos: Feed			
		Stability			
		Servos Controlled by Filter with Clampi			
	5.16.	Clamped Servo with Proportional Control	ol		259
Снар. 6.	ST	ATISTICAL PROPERTIES OF TIME-	VARIABLE DATA	A	262
Inti	RODUC	TION			262
	6.1.	The Need for Statistical Considerations.			262
	6.2.	Random Process and Random Series			266
	6.2	Probability distribution Functions		-	268

CONTENTS

Harmon	ic Analysis for Stationary Random Processes	270
6.4.	Stationary Random Process	270
6.5.	Time Averages and Ensemble Averages	27
6.6.	Correlation Functions	
6.7.	Spectral Density	278
6.8.	The Relation between the Correlation Functions and the Spectral	
	Density	
6.9.	Spectral Density and Autocorrelation Function of the Filtered	
	Signal	288
Exampli	38 	291
6.10	. Radar Automatic-tracking Example	291
	. Purely Random Processes	
6.12	. A Typical Servomechanism Input	300
6.13	Potentiometer Noise	305
CHAP. 7. RI	MS-ERROR CRITERION IN SERVOMECHANISM DESIGN .	308
7 ·1.	Preliminary Discussion of the Method	308
7.2.	Mathematical Formulation of the RMS Error	312
7.3.	Nature of the Transfer Function	
7.4.	Reduction of the Error Spectral Density to a Convenient Form .	
7 ·5.	A Simple Servo Problem	321
7 ·6.	Integration of the Error Spectral Density	323
7.7.	Minimizing the Mean-square Error	325
7 ·8.	Radar Automatic-tracking Example	328
7 ·9.	Evaluation of the Integrals	333
CHAP. 8. AI	PPLICATIONS OF THE NEW DESIGN METHOD	340
8.1.	Input Signal and Noise.	
-		
Servo w	ITH PROPORTIONAL CONTROL	
8·2.	Best Control Parameter	
8·3 .	Properties of the Best Servo with Proportional Control	
8.4.	Servo with Proportional Control, $T_m = 0$	347
TACHOME	TER FEEDBACK CONTROL	348
8.5.	Mean-square Error of Output	
8.6.	Ideal Case of Infinite Gain	349
8.7.	Best Control Parameters for Finite Amplifications	352
8.8.	Decibel-log-frequency Diagram	
8.9.	Nyquist Diagram	
Manital.	TRACKING	360
	Introduction	
	The Aided-tracking Unit	
8.12	Application of the Rms-error Criterion in Determining the Best	001
3 12 .	Aided-tracking Time Constant	363
APPENDE		
APPENDL	TALL INDUCTINGUALS	909
INDEX		371