MASSACHUSETTS INSTITUTE OF TECHNOLOGY RADIATION LABORATORY SERIES

Louis N. Ridenour, Editor-in-Chief

RADAR SCANNERS AND RADOMES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1.21.31

RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief GEORGE B. COLLINS, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBERT M. JAMES, JULIAN K. KNIPP, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

- 1. RADAR SYSTEM ENGINEERING-Ridenour
- 2. RADAR AIDS TO NAVIGATION-Hall
- 3. RADAR BEACONS-Roberts

1

E

- 4. LORAN-Pierce, McKenzie, and Woodward
- 5. Pulse Generators-Glasoe and Lebacqz
- 6. MICROWAVE MAGNETRONS-Collins
- 7. KLYSTRONS AND MICROWAVE TRIODES-Hamilton, Knipp, and Kuper
- 8. Principles of Microwave Circuits-Montgomery, Dicke, and Purcell
- 9. MICROWAVE TRANSMISSION CIRCUITS—Ragan
- 10. WAVEGUIDE HANDBOOK-Marcuvitz
- 11. TECHNIQUE OF MICROWAVE MEASUREMENTS-Montgomery
- 12. MICROWAVE ANTENNA THEORY AND DESIGN-Silver
- 13. PROPAGATION OF SHORT RADIO WAVES-Kerr
- 14. MICROWAVE DUPLEXERS-Smullin and Montgomery
- 15. CRYSTAL RECTIFIERS-Torrey and Whitmer
- 16. MICROWAVE MIXERS-Pound
- 17. COMPONENTS HANDBOOK-Blackburn
- 18. VACUUM TUBE AMPLIFIERS--Valley and Wallman
- 19. Waveforms-Chance, Hughes, MacNichol, Sayre, and Williams
- 20. Electronic Time Measurements—Chance, Hulsizer, MacNichol, and Williams
- 21. ELECTRONIC INSTRUMENTS-Greenwood, Holdam, and MacRae
- 22. CATHODE RAY TUBE DISPLAYS-Soller, Starr, and Valley
- 23. MICROWAVE RECEIVERS--Van Voorhis
- 24. THRESHOLD SIGNALS-Lawson and Uhlenbeck
- 25. THEORY OF SERVOMECHANISMS-James, Nichols, and Phillips
- 26. RADAR SCANNERS AND RADOMES-Cady, Karelitz, and Turner
- 27. COMPUTING MECHANISMS AND LINKAGES-Svoboda
- 28. Index-Henney

RADAR SCANNERS AND RADOMES

Edited by

W. M. CADY

HEAD, PHYSICS DIVISION, U.S. NAVAL ORDNANCE TEST STATION, PASADENA ANNEX

M. B. KARELITZ

ASSISTANT DIRECTOR OF RESEARCH CENERAL PRECISION LABORATORY, INC.

LOUIS A. TURNER

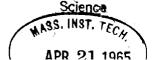
HEAD, DEPARTMENT OF PHYSICS
STATE UNIVERSITY OF IOWA

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE

FIRST EDITION

NEW YORK · TORONTO · LONDON MCGRAW-HILL BOOK COMPANY, INC. 1948 TK6573

V.26


RADAR SCANNERS AND RADOMES

COPYRIGHT, 1948, BY THE McGraw-Hill Book Company, Inc. PRINTED IN THE UNITED STATES OF AMERICA

> All rights reserved. This book, of parts thereof, may no! be reproduced in any form without permission of the publishers.

Science Library

THE MAPLE PRESS COMPANY, YORK, PA.

RADAR SCANNERS AND RADOMES

EDITORIAL STAFF

LOUIS A. TURNER
R. G. HERB
W. M. CADY
M. B. KARELITZ

CONTRIBUTING AUTHORS

V. G. Bruce
W. M. Cady
L. L. Davenport
W. B. Ellis
J. K. McKendry
E. B. McMillan
F. J. Mehringer
W. B. Ewing
R. M. Robertson
R. J. Grenzback
R. Sher
D. D. Jacobus
H. A. Straus
M. B. Karelitz
F. E. Swain
Louis A. Turner

J. S. WHITE

Foreword

The tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields, and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of other scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together even though often in widely separated laboratories that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DUBRIDGE.

y isi

,

Preface

RADAR scanner, or antenna mount, is the assembly consisting of the antenna and the mechanism that causes the radiated beam to scan. In this volume we are concerned mainly with the engineering of the scanner and its housing. The electrical design of the antenna and the transmission line are discussed in Vol. 12 of the Radiation Laboratory Since the reader is presumed to have an engineering background, the discussion of radar antenna mounts in Part I deals only with those features of the design which are peculiar to radar antenna mounts. The treatment is incomplete in two respects. There is almost no reference to equipment operating at wavelengths longer than 10 cm, and there is little discussion of scanners that were not developed at the Radiation Laboratory. These omissions, particularly the latter, should not be regarded as indication of editorial complacency; they result from lack of information by the authors. Many valuable radar systems and radar antenna mounts have been devised for use at 20 cm and longer wavelengths; many have been developed by industry and the armed services. These systems get only passing mention or none at all because of our reluctance to write about unfamiliar topics.

It has been necessary to omit much pertinent material for reasons of military security. The editors have sought to include as much technical information as permissible and the advisory group on security has been cooperative. Deletions and revisions had to be made in the proof, however, in accord with recommendations of the final review board and it was not possible at the late date to smooth out the resulting gaps by thorough revision. The editors regret the deletions but believe that the material which remains will prove to be of value.

Part I is written largely for the mechanical engineer; in Part II electrical considerations predominate. This second part is the first comprehensive discussion of radomes, the plastic enclosures for antennas. Radome development has opened a new field of electromechanical engineering. Because the electrical aspects are less familiar, they are more fully treated here.

All the authors wrote as staff members of the Radiation Laboratory. Their contributions are indicated in each chapter. The book was

planned and guided through several stages of revision by W. M. Cady and M. B. Karelitz; after their departure in February 1946, L. A. Turner took over. M. B. Karelitz assumed the principal responsibility for editing the chapters on ground-based and shipborne antenna mounts; W. M. Cady for the airborne scanners; and L. A. Turner for Part II on radomes.

The techniques of preparing the volume were in the hands of Louise P. Butler, Betty S. Karasik, Martha T. Romanak and Joyce H. Randall. The multiple authorship and the changes of editorial staff that occurred while the volume was being prepared are doubtless reflected in some lack of homogeneity. We hope that this will not interfere with the usefulness of the book.

The nature of the development work at Radiation Laboratory has been so highly cooperative that very often the originators of an idea are unknown and credit cannot be given. It is the labor of these anonymous workers that we most wish to acknowledge, for they are the ultimate authors. Throughout the writing and editing of the volume we have benefited from the friendly criticisms of many of our colleagues in this Laboratory.

THE AUTHORS.

The strain was the

April, 1948.

Contents

FOREWO	RD i	by L. A. DuBridge
PREFACI	E.	
		PART I. RADAR SCANNERS
Снар. 1.	USI	ES OF RADAR SCANNERS
Intro	DUCI	rion
THE S	Scan	NER IN USE
1	·2.	Surface-based Antenna Mounts
ELEM	ENTS	Common to All Scanners
1 1 1	·6. ·7.	Antenna 5 Transmission Line 5 Scans 7 Kinematics of the Scanner 8 Data Transmission 9
Ante	NNA-	MOUNT FUNCTION AND DESIGN
1 1 1	.·10. .·11. .·12.	Fundamental Equations10Examples of Design12Mounts with Two Antennas13Stabilization13Structural Design14
Снар. 2.	GR	OUND AND SHIP ANTENNAS
Prop	ERTII	es of Reflectors
2	2·1. 2·2. 2·3. 2·4.	Reflection of Microwave Radiation
TYPE	s of	Reflecting Surfaces
2	2·5. 2·6. 2·7.	Solid Surfaces. 1 Mesh Surfaces 20 Grating Surfaces 21

CONTENTS

REFLECT	FOR FORMS AND TEMPLATES			. 25
2·8. 2·9. 2·10. 2·11.	True Paraboloids	·		. 28 . 30
Wind Lo	oads on Reflectors			. 33
	R. Wind Drag			. 33 . 36
STRUCTUE	TRAL CHARACTERISTICS OF SPECIFIC REFLECTORS			. 38
2 ·14.	Photographs and Tables			. 38
Electric	CALLY SCANNING FEEDS			. 45
	5. The Robinson Scanning Feed			
MECHANI	IICALLY SCANNING FEEDS			. 61
2.18.	7. Rotating Feeds			. 62 . 64 . 67
Снар. 3. G1	ROUND ANTENNA MOUNTS			. 70
SIMPLE S	Search Mounts			. 70
3·1. 3·2. 3·3.	Scanning Requirements. Component Parts Characteristics of Specific Mounts			. 72
Неіднт-н				
3·4. 3·5. 3·6.				. 85 . 86
CHAP. 4. ST	TABILIZATION OF SHIP ANTENNAS			. 104
Prelimin	NARY CONSIDERATIONS			. 104
	YPES OF STABILIZED ANTENNAS			
4·1. 4·2. 4·3. 4·4. 4·5. 4·6.	The One-axis Pedestal		 	. 105 . 108 . 110 . 111
Stabiliza	AATION INSTRUMENTATION			
4.7.	Stable Elements and Stable Verticals			. 116
Сомрите	ERS FOR STABILIZATION DATA			. 117
4.8.	Mechanical Analytic Computers			117

	CONTENTS	xiii
4·10. Elect	structive Computers trical-resolver Computers tralized vs. Individual Instrumentation	123
CHAP. 5. SHIP A	NTENNA MOUNTS	129
$5\cdot 2$. Ante	ling	132
DRIVING MECH	HANISMS	135
5.5. Moto 5.6. Gear 5.7. Powe	es of Driving Mechanisms or-drive Selection ring and Related Items er Distribution and Data Transmission osion, Thermal Effects, etc	137 138 141
	ics of Specific Mounts	
	ographs and Tables	
Снар. 6. AIRBOI	RNE SCANNERS	155
6.2. Ante	ennas with Paraboloidal Reflectors	156
AIRBORNE ANT	TENNA MOUNTS	162
6·5. Airbo 6·6. The 6·7. Data	ditions of Operation. orne Scanner Installation R-f Transmission Line a Transmission hanical Components	164 165
Examples of	Airborne Scanners	171
6·9. AN/ 6·10. Larg 6·11. AN/ 6·12. Expe 6·13. AN/	APG-15. e (10-cm) Experimental Scanner. APQ-13 (60-in.) erimental Stabilized Scanner for 1-cm Radar. APS-6. APQ-7 (Eagle).	172 175 177 183
	ZATION OF AIRBORNE ANTENNAS	194
7·1. Stab7·2. Roll7·3. Line-7·4. Pitch	le-base Stabilization Stabilization -of-sight Stabilization n Stabilization parison of Stabilization Methods	195 195 195
REQUIREMENTS	FOR ACCURACY	201
7.6. Stab	ilization Tolerances	201

CONTENTS

	7·7. 7·8.	Gyros <td< th=""></td<>
Ex	AMPLES	OF AIRBORNE STABILIZED SCANNERS
	7·9. 7·10.	GEI Roll-stabilized Scanner
Снар. 8	s. sc.	ANNER CONTROL MECHANISMS
SEI	RVOMEC	PHANISM PRINCIPLES
	8·1. 8·2. 8·3. 8·4. 8·5.	The Servo Loop 211 Basic Servo Equations 212 The Input Member 217 The Servomotor 218 The Servo Controller 220 Data-transmission Systems 223
M	ECHANI	CAL DESIGN FACTORS
	8·7. 8·8.	Linear Factors
DE	sign S	Specifications
	8·9. 8·10.	Accuracy
RE	PRESE	NTATIVE SCANNER SERVOMECHANISMS
		Ship and Ground Applications
		PART II. RADOMES
Снар.	9. GI	ENERAL SURVEY OF THE RADOME PROBLEM 241
	9·1. 9·2. 9·3. 9·4. 9·5.	Types of Installation242Electrical Requirements244Mechanical Requirements254Normal-incidence Radomes256Streamlined Radomes257
Снар.	10. E	LECTRICAL DESIGN OF NORMAL-INCIDENCE RADOMES 259
	10·1. 10·2. 10·3. 10·4. 10·5. 10·6. 10·7.	Introduction
Снар.		LECTRICAL DESIGN OF STREAMLINED RADOMES 28
	11.1	Introduction 280

			_~
CO.	NT	EN'	$r_{\mathcal{S}}$

xv

11.2. Plane Lossless Sheets, Arbitrary Incide		
11.3. Lossless Panels at Perpendicular Polar		
11.4. Lossless Panels at Parallel Polarization		
11.5. Homogeneous Panels with Finite Loss	•	
Transmission and Reflection of Sandwiche		
11.6. General Considerations		
11.7. Lossless Sandwiches at Arbitrary Incid		
11.8. Lossless Sandwiches with Thin Skins.		312
11.9. Reflection of Sandwiches with Skins length		322
11.10. Reflection of Sandwiches with Cores of		
11-11. Transmission of Lossy Sandwiches		
11-12. Experimental Results on the Transmis	sion of Typical Sandwiches	32 9
11-13. Elliptical Polarization		338
CHAP. 12. THEORY OF THE REFLECTION A	ND TRANSMISSION OF	
ELECTROMAGNETIC WAVES BY DIELEC	CTRIC MATERIALS	341
12-1. Plane Electromagnetic Waves		341
12.2. Absorbing Mediums		
12.3. Hybrid Plane Waves		346
12-4. Reflection and Refraction of a Plane	Electromagnetic Wave at	
the Boundary between Mediums		347
12.5. Reflection and Transmission by a Shee	t of Dielectric Material	354
12.6. Reflection and Transmission by Sandy		
12.7. Elliptical Polarization		366
CHAP. 13. RADOME MATERIALS AND METHO	ODS OF FABRICATION.	36 9
13.1. Fabrication of Radomes		369
13.2. Drawn Thermoplastic Materials		36 9
13.3. Molded Thermoplastic Materials		371
13.4. Molded Thermosetting Materials		
13.5. Materials for Construction of Sandwic	hes	378
13.6. Fabrication of Sandwich Radomes	· · · · · · · · · · · · · · · · · · ·	379
MECHANICAL PROPERTIES OF RADOME MATERI		
13.7. Evaluation of Strength and Stiffness		383
13.8. Flexural Properties of Thermoplastics		387
13.9. Flexural Properties of Thermosetting	Laminates	3 89
13.10. Mechanical Properties of Sandwiches.		395
13-11. Mechanical Properties of Core Materia	als	407
ELECTRICAL PROPERTIES OF RADOME MATERIA	LS	408
13·12. General Remarks		408
13·13. Dielectric Constants of Polyfiber and	Foam Plastics	40 9
13.14. Electrical Properties of Laminates		413
13-15. Evaluation of Materials, Normal Incid	dence	415
CRAP. 14. INSTALLATION AND TESTING OF	RADOMES	419
14.1. Aerodynamic Considerations		419
14.2. Structural Design of Radomes		424

v	171	
л	V 1	

CONTENTS

14.3.	Anti-icing and Deicing	425
14.4.	Examples of Airborne Normal-incidence Radomes	42 6
14.5.	Examples of Streamlined Radomes	430
14.6.		138
ELECTRIC	CAL AND MECHANICAL TESTS	441
14.7.	Equipment for Electrical Test	441
14.8.	Procedure in Electrical Test	448
14.9.		454
14.10.	Examples of Structural Tests	456
Design A	AND TESTING OF HOUSING FOR BEACON ANTENNAS	460
14.11.	Electrical Design and Testing of Beacon Antennas	460
APPENDIX	A. FORMULAS FOR STABILIZATION OF SHIP ANTENNAS	463
A·1.	Deck-tilt Correction; Elevation Order	463
A·2.	Level and Cross-level Angles	468
GLOSSARY		473
INDEX		122