

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief George B. Collins, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBERT M. JAMES, JULIAN K. KNIPP, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

- -1. RADAR SYSTEM ENGINEERING-Ridenour
 - 2. RADAR AIDS TO NAVIGATION-Hall
 - 3. RADAR BEACONS—Roberts
 - 4. LORAN-Pierce, McKenzie, and Woodward
- 5. Pulse Generators—Glasoe and Lebacgz
- 6. MICROWAVE MAGNETRONS—Collins
- 7. KLYSTRONS AND MICROWAVE TRIODES—Hamilton, Knipp, and Kuper
 - 8. Principles of Microwave Circuits-Montgomery, Dicke, and Purcell
 - 9. Microwave Transmission Circuits—Ragan
- ✓ 10. WAVEGUIDE HANDBOOK—Marcuvitz
- 11. TECHNIQUE OF MICROWAVE MEASUREMENTS-Montgomery
- 12. MICROWAVE ANTENNA THEORY AND DESIGN—Silver
- 13. PROPAGATION OF SHORT RADIO WAVES-Kerr
- , 14. MICROWAVE DUPLEXERS—Smullin and Montgomery
 - 15. CRYSTAL RECTIFIERS—Torrey and Whitmer
- 2 16. MICROWAVE MIXERS-Pound
 - 17. Components Handbook-Blackburn
 - 18. VACUUM TUBE AMPLIFIERS-Valley and Wallman
 - 19. Waveforms-Chance, Hughes, MacNichol, Sayre, and Williams
 - 20. Electronic Time Measurements—Chance, Hulsizer, MacNichol, and Williams
 - 21. Electronic Instruments—Greenwood, Holdam, and MacRae
 - 22. CATHODE RAY TUBE DISPLAYS-Soller, Starr, and Valley
- 23. MICROWAVE RECEIVERS-Van Voorhis
- 24. Threshold Signals—Lawson and Uhlenbeck
- 25. Theory of Servomechanisms—James, Nichols, and Phillips
- 26. RADAR SCANNERS AND RADOMES—Cady, Karelitz, and Turner
 - 27. Computing Mechanisms and Linkages-Svoboda
 - 28. INDEX-Henney

PRINCIPLES OF MICROWAVE CIRCUITS

Edited by

C. G. MONTGOMERY

ASSOCIATE PROFESSOR OF PHYSICS
YALE UNIVERSITY

R. H. DICKE

ASSISTANT PROFESSOR OF PHYSICS PRINCETON UNIVERSITY

E. M. PURCELL

ASSOCIATE PROFESSOR OF PHYSICS HARVARD UNIVERSITY

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT
NATIONAL DEFENSE RESEARCH COMMITTEE

NEW YORK · TORONTO · LONDON
McGRAW-HILL BOOK COMPANY, INC.
1948

1 N 60 N . M 41 V. 8 C. 3

PRINCIPLES OF MICROWAVE CIRCUITS

COPYRIGHT, 1948, BY THE
McGraw-Hill Book Company, Inc.
PRINTED IN THE UNITED STATES OF AMERICA

All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

IV

SCIENCE LIBRARY

THE MAPLE PRESS COMPANY, YORK, PA.

SS. INST. TEC.

MAY 15 1956

PRINCIPLES OF MICROWAVE CIRCUITS

EDITORIAL STAFF

C. G. Montgomery
D. D. Montgomery

CONTRIBUTING AUTHORS

E. R. BERINGER
R. H. DICKE
N. MARCUVITZ
C. G. MONTGOMERY
E. M. PURCELL

Foreword

The tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields, and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of other scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together even though often in widely separated laboratories that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DuBridge.

Preface

IN THE engineering application of low-frequency currents, an impor-L tant step forward was the development of the impedance concept and its utilization through the theory of linear networks. It was almost inevitable that this concept would be generalized and become useful in the application of microwaves. This volume is devoted to an exposition of the impedance concept and to the equivalent circuits of microwave devices. It is the intention to emphasize the underlying principles of these equivalent circuits and the results that may be obtained by their Specific devices are not discussed except as illustrations of the general methods under consideration. These devices and the details of the design procedure are treated in other volumes of this series. solutions of the boundary-value problems which give the susceptances of microwave-circuit elements are likewise omitted. The results of such calculations that have been performed up to the present time are compiled in Vol. 10, the Waveguide Handbook, and these results are used freely. Although the work of the Radiation Laboratory at MIT was the development of military radar equipment, the principles discussed in this volume can be applied to microwave equipment of all kinds.

THE AUTHORS

New Haven, Conn., February, 1947.

χ

Contents

FOREWORD	BY L. A. DUBRIDGE.			,		vii
PREFACE.	 					ix
CHAP. 1. IN	TRODUCTION BY E. M. PURCELL.	-				1
1.1.	Microwaves					1
1.2.	Microwave Circuits					3
1.3.	Microwave Measurements					5
1.4.	The Aims of Microwave Circuit Analysis					8
1.5.	Linearity					9
1.6.	Dissipation					9
1.7.	Symmetry					9
	TOTAL CANTING WALKER AND A ST					
('нар. 2. ЕЛ	ECTROMAGNETIC WAVES BY C. G. MONTGOMERY	٠	٠	٠	٠	10
Тне Еге	LD RELATIONS					10
2.1.	Maxwell's Equation					10
2.2.	Poynting's Vector and Energy Theorems					14
2.3.	Solutions of Maxwell's Equations					16
	•					
PURELY	Transverse Electromagnetic Waves					17
2.4.	Uniform Plane Waves					17
2.5.	Nonuniform Transverse-electromagnetic Plane Waves .					19
2.6.	TEM-waves between Parallel Plates		,			22
2.7.	TEM-waves between Coaxial Cylinders			1		23
2.8.	Spherical TEM-waves					25
2.9.	Uniform Cylindrical Waves					26
2.10	Babinet's Principle					28
	MAGNETIC WAVES WITH LONGITUDINAL COMPONENTS					30
2.11	General Procedure					30
	The Normal Modes of Rectangular Pipes .					33
	The Normal Modes in Round Pipes					38
2.14	Higher Modes in Coaxial Cylinders					41
2.14	Normal Modes for Other Cross Sections					42
2.18	Transmission Losses	•		•	•	45
	Cylindrical Cavities					48
	Energy Density and Power Flow in Waveguides.					50
	Summary of Results					

xii CONTENTS

	AVEGUIDES AS TRANSMISSION LINES BY C. G. MONT-	60
3.1.	Some General Properties of Guided Waves	60
3.2.	Low-frequency Transmission Lines.	64
3.3.	The Transformation of Impedances	67
3.4.	Power Flow.	69
3·5.	The Combination of Admittances	70
3.6.	Transmission-line Charts	71
3·7.	Impedance Concept in Waveguide Problems.	75
3.8.	Equivalent T-network of a Length of Waveguide.	77
3 ⋅9.	Transmission-line Equations for the H ₁₀ -mode.	79
CHAP. 4. EL	EMENTS OF NETWORK THEORY BY C. G. MONTGOMERY	83
4.1.	Elementary Considerations	83
4.2.	The Use of Matrices in Network Theory	87
4.3.	Fundamental Network Theorems	90
4.4.	The Synthesis Problem and Networks with One Terminal Pair	95
4.5.	The Circuit Parameters of Two-terminal-pair Networks	99
4.6.	Equivalent Circuits of Two-terminal-pair Networks	
4.7.	Symmetrical Two-terminal-pair Networks.	110
4.8.	Chains of Four-terminal Networks.	112
4.9.	Filters	115
4.10.	Series and Parallel Connection of Networks	119
	Three-terminal-pair Networks	121
	Circuits with N Terminal Pairs	124
	Resonant Circuits	127
Di	ENERAL MICROWAVE CIRCUIT THEOREMS BY R. H.	130
5.1.	Some General Properties of a Waveguide Junction	
Тне Тев	mination of a Single Transmission Line	132
5·2.	Poynting's Energy Theorem for a Periodic Feld	132
5 ⋅ 3 .	Uniqueness of Terminal Voltages and Currents	
5.4.	Connections between Impedance and Stored and Dissipated Energy	
5.5.	Field Quantities in a Lossless Termination.	
5·6.	Wave Formalism	
5·7.	Connection between the Reflection Coefficient and Stored Energy	
THE JUN	ction of Several Transmission Lines	1 3 9
5.8.	Extension of the Uniqueness Theorem to N-terminal-pair Junc-	
5.9.	tions	
	Symmetry of Impedance and Admittance Matrices	141
5.11. 5.19	Physical Realizability. The Polyterminal-pair Lossless Junction	143
	Definition of Terminal Voltages and Currents for Waveguides	
		144

	CONTENTS	xiii
5·1 5·1	14. Scattering Matrix	148 148
	 18. The T-matrix of a Series of Junctions Connected in Cascade 19. The Scattering Matrix of a Junction with a Load Connected to One of the Transmission Lines 	150
FREQU	ENCY DEPENDENCE OF A LOSSLESS JUNCTION	151
5.5 5.5 5.5 5.5	20. Variational Energy Integral 21. Application to Impedance and Admittance Matrix 22. Application to Scattering Matrix 23. Transmission-line Termination 24. Foster's Reactance Theorem 25. Frequency Variation of a Lossless Junction with Two Transmission Lines.	152 153 154 156
Снар. 6.	WAVEGUIDE CIRCUIT ELEMENTS by C. G. Montgomery	162
6.	1. Obstacles in a Waveguide	162
THIN	DIAPHRAGMS AS SHUNT REACTANCES	163
6.5		
6·:		
6.		
6.	6. Capacitive Tuning Screw	
6·		169
6·	production of contract of	
_	10. Babinet's Principle.	
	11. The Susceptance of Small Apertures	
IMPED	ANCE MATCHING WITH SHUNT SUSCEPTANCES	179
	12. Calculation of the Necessary Susceptance.	
	13. Screw Tuners	
Chanc	GES IN THE CHARACTERISTIC IMPEDANCE OF A TRANSMISSION LINE.	187
6.	15. Diameter Changes in Coaxial Lines	187
	16. Change in the Dimensions of a Rectangular Waveguide.	
	17. Quarter-wavelength Transformers	
	18. Tapered Sections of Line	
	CHED TRANSMISSION LINES	
	20. Shunt Branches in Coaxial Lines	
6-	21. Series Branches in Coaxial Lines	195
	22. Series Branches and Choke Joints in Waveguide.	

xiv CONTENTS

Disconti	NUITIES WITH SHUNT AND SERIES ELEMENTS	198
6.23.	Obstacles of Finite Thickness	198
6.24.	Radiation from Thick Holes.	201
6.25.	Bends and Corners in Rectangular Waveguide.	201
6.26.	Broadbanding	203
G = D	CONTAINE CHARGE IS ACCOUNTED ON THE	
CHAP. 7. R. M.	ESONANT CAVITIES AS MICROWAVE CIRCUIT ELE- ENTS BY ROBERT BERINGER	207
Equivale	NT CIRCUIT OF A SINGLE-LINE LOSSLESS CAVITY-COUPLING SYSTEM	208
7 ·1.	Impedance Functions of Lossless Lumped Circuits	209
7.2.	Impedance Functions of Lossless Distributed Circuits	211
7 ⋅3.	Impedance-function Synthesis of a Short-circuited Lossless	
	Transmission Line	213
	NT CIRCUIT OF A SINGLE-LINE CAVITY-COUPLING SYSTEM WITH	
Lo	SS	214
7.4.	Foster's Theorem for Slightly Lossy Networks	215
7.5.	The Impedance Functions of Simple Series- and Parallel-resonant	
	Circuits.	217
7 ·6.	The Equivalent Circuit of a Loop-coupled Cavity	218
7.7 .	Impedance Functions Near Resonance	
7.8.	Coupling Coefficients and External Loading.	
7.9.	General Formulas for Q-Factors	
7 ⋅10.	Iris-coupled, Short-circuited Waveguide.	231
	DUPLING SYSTEMS WITH TWO EMERGENT TRANSMISSION LINES .	
	$General\ Representation\ of\ Lossless\ Two-terminal-pair\ Networks.$	
	Introduction of Loss	
	Representation of a Cavity with Two Loop-coupled Lines	
7.14.	Transmission through a Two-line Cavity-coupling System	237
CHAP. 8. RA	DIAL TRANSMISSION LINES BY N. MARCUVITZ	240
8-1.	The Equivalent-circuit Point of View	240
8.2.	Differences between Uniform and Nonuniform Regions.	240
8.3.	Impedance Description of Uniform Lines	248
8.4.	Field Representation by Characteristic Modes.	
8.5.	Impedance Description of a Radial Line	256
8.6.	Reflection Coefficients in Radial Lines	
8.7.	Equivalent Circuits in Radial Lines	267
8-8.	Applications	271
8.9.	A Coaxial Cavity	273
8.10.	Capacitively Loaded Cavity	
8-11.	Capacitively Loaded Cavity with Change in Height	275
8.12.	Oscillator Cavity Coupled to Rectangular Waveguide	277
Снар. 9. W.	AVEGUIDE JUNCTIONS WITH SEVERAL ARMS BY C. G.	
	ONTGOMERY AND R. H. DICKE	283
	ONS	
9.1.	General Theorems about T-junctions	283

9.2. The Choice of an Equivalent Circuit. Transformation of Refer-	000
ence Planes	286
9-3. The E-plane T-junction at Long Wavelengths	288
9.4. E-plane T-junction at High Frequencies	291
9.5. H-plane T-junctions	294
9.6. A Coaxial-line T-junction	295
9.7. The T-junction with a Small Hole	296
Waveguide Junctions with Four Arms	
9.8. The Equivalent Circuit of a Four-junction	298
9.9. Directional Couplers	299
9.10. The Scattering Matrix of a Directional Coupler	301
9-11. The Arbitrary Junction of Four Transmission Lines	303
	306
	308
9.14. Four-junctions with Small Holes	311
	313
9.16. A Generalization of the Theory of Four-terminal Networks to	010
	915
Four-terminal-pair Networks	919
RADIATION AND SCATTERING BY ANTENNAS	317
9-17. Representation in Terms of Plane Waves	317
	319
9.19. Solutions of the Vector Wave Equations	
9.20. Scattering Matrix of Free Space	394
9.20. Scattering Matrix of Free Space.	205
9-21. Scattering Matrix of a Simple Electric Dipole	
9.22. The General Antenna.	
9.23. The General Scattering Problem.	
9.24. Minimum-scattering Antenna	329
CHAP. 10. MODE TRANSFORMATIONS BY E. M. PURCELL AND R. H.	
Dicke	334
10.1 Made Townships	335
10·1. Mode Transducers	
10-2. General Properties of Mode Transducers	
10·3. The Problem of Measurement	
10-4. Mode Filters and Mode Absorbers.	
10.5. The TE-mode in Round Guide.	
10.6. Permissible Transformations of a Scattering Matrix	351
10·7. Quarter-wave Pipe	354
10-8. Rotary Phase Shifter	355
10.9. A Rectangular-to-round Transducer	
10-10. Discontinuity in Round Guide	
10-11. Principal Axes in Round Guide	
10-12. Resonance in a Closed Circular Guide	
10-12. Resonance in a Closed Circular Guide	501
CHAP. 11. DIELECTRICS IN WAVEGUIDES BY C. G. MONTGOMERY	365
11.1. Waveguides Filled with Dielectric Materials	365
11.2. Reflection from a Change in Dielectric Constant.	
11.3. Dielectric Plates in Waveguides	374
11-4. The Nature of Dielectric Phenomena.	376

xvi CONTENTS

11.5.	Ferromagnetism at Microwave Frequencies	
11.6.	Guides Partially Filled with Dielectric	
11.7.	Dielectric Post in Waveguide	
11.8.	Cavities Containing Dielectrics	
11.9.	Propagation in Ionized Gases	
11.10.	Absorbing Materials for Microwave Radiation	396
Снар. 12. Т	HE SYMMETRY OF WAVEGUIDE JUNCTIONS BY R. H.	
Dı	CKE	401
12.1.	Classes of Symmetry	401
12·2.	Symmetry of the Thin Iris	403
MATRIX .	Algebra	405
12.3.	The Eigenvalue Problem	405
12.4.	Symmetrical Matrices	407
12.5.	Rational Matrix Functions, Definitions.	409
12 ·6.	Commuting Matrices	410
12.7.	Cayley-Hamilton's Theorem.	410
Symmetr	ies of Maxwell's Equations	411
12.8.	The symmetry of a Reflection in a Plane	412
12 ·9.	Symmetry Operators	414
1 2 ·10.	${\bf Field\ Distributions\ Invariant\ under\ Axial\ and\ Point\ Reflections}.$	416
WAVEGUI	DE JUNCTIONS WITH TWO OR THREE ARMS	417
12.11.	The Thick Iris	417
	The Symmetrical Y-junction	
12.13.	Experimental Determination of S_1 and S_2 .	427
12.14.	Symmetrical T-junctions	430
12·15.	The Shunt T-junction	432
12·16.	The Use of the T-junction as an Element of a Tuner.	435
	Directional Couplers	
	The Single-hole Directional Coupler	
12.19.	The Biplanar Directional Coupler	445
12·20.	The Magic T	447
12.21.	The Synthesis Problem	448
12.22.	Coupling-hole Magic T's	451
12.23.	Magic T with a Single Symmetry Plane	452
12.24.	Synthesis of Magic T with a Single Symmetry Plane in Coaxial Lines	454
19.95	The Star	
	The Turnstile Junction	
12.27.	Purcell's Junction	466
	CY DEPENDENCE OF SYMMETRICAL JUNCTIONS	
	The Eigenvalue Formulation	
12·29.	Wideband Symmetrical Junctions	479
INDEX		48

X VII

IIIVX